Azure Load Testing Python SDK 1.1.0b1版本发布:全面支持新一代负载测试能力
Azure Load Testing是微软Azure云平台提供的一项全托管负载测试服务,它允许开发者和测试工程师轻松创建和执行大规模负载测试,无需管理底层基础设施。通过Python SDK,开发者可以以编程方式与Azure Load Testing服务进行交互,实现测试的自动化管理和执行。
本次发布的1.1.0b1版本是一个重要的预览版更新,基于2025-05-01-preview API版本构建,引入了多项新功能和改进。值得注意的是,从这个版本开始,SDK将不再支持Python 3.7,最低要求提升至Python 3.8。
核心功能增强
1. 自动停止标准支持
新版本引入了AutoStop Criteria功能,允许用户为测试定义自动停止条件。通过Test模型中的auto_stop_criteria属性,用户可以设置各种条件来在特定情况下自动终止测试,例如当错误率超过阈值或响应时间达到不可接受的水平时。
2. RPS快速测试能力
对于需要快速验证系统性能的场景,新增了基于RPS(每秒请求数)的快速负载测试功能。开发者现在可以通过OptionalLoadTestConfig模型中的requests_per_second和max_response_time_in_ms参数直接指定期望的请求速率和最大响应时间阈值,简化了测试配置过程。
3. URL测试与JSON测试计划
为满足不同测试场景的需求,SDK现在支持URL测试类型和JSON格式的测试计划。新增的TestKind.URL枚举值和FileType.URL_TEST_CONFIG文件类型让开发者能够更灵活地定义测试行为。
4. Locust测试框架集成
对于习惯使用Locust框架的用户,新版本增加了原生支持。通过TestKind.Locust枚举值,开发者可以直接使用Locust脚本来定义负载测试场景,充分利用Locust的灵活性和易用性。
高级功能与架构改进
1. 多区域负载测试
现代分布式系统常常部署在多个区域以实现高可用性和低延迟。新版本通过LoadTestConfiguration模型中的regional_load_test_config属性支持多区域负载测试配置,允许开发者指定不同区域的负载分布比例,更真实地模拟全球用户访问模式。
2. 私有测试网络增强
对于安全性要求高的场景,新增了public_ip_disabled属性来禁用公共IP部署。这意味着负载测试生成器可以完全在私有网络中运行,不与公共互联网交互,满足严格的安全合规要求。
3. ZIP压缩包支持
为简化测试资源管理,现在支持直接上传ZIP格式的测试资源包。通过FileType.ZIPPED_ARTIFACTS枚举值,开发者可以将多个测试文件打包上传,减少上传操作次数并保持文件组织结构。
测试配置管理革新
1. 测试配置文件管理
新版本引入了完整的测试配置文件(Test Profile)管理能力。通过LoadTestAdministrationClient提供的方法集,开发者可以:
- 创建或更新测试配置(
create_or_update_test_profile) - 获取特定配置详情(
get_test_profile) - 删除不再需要的配置(
delete_test_profile) - 列出所有可用配置(
list_test_profiles)
2. 测试配置运行控制
配合测试配置文件,SDK还提供了测试配置运行(Test Profile Run)的管理接口。通过LoadTestRunClient中的方法,开发者能够:
- 启动测试配置运行(
begin_test_profile_run) - 获取运行状态和结果(
get_test_profile_run) - 清理完成的运行(
delete_test_profile_run) - 查看历史运行记录(
list_test_profile_runs)
升级建议与注意事项
对于现有用户,升级到1.1.0b1版本需要注意以下几点:
- Python版本要求已提升至3.8+,升级前请确保环境兼容
- 由于是预览版API,部分功能可能在正式版发布前会有调整
- 新引入的测试配置管理功能提供了更结构化的测试定义方式,建议逐步迁移到新模型
- 多区域测试功能需要相应的网络配置支持,使用时需确保测试环境准备充分
Azure Load Testing Python SDK的这次更新显著扩展了负载测试的能力边界,为云原生应用的性能验证提供了更强大、更灵活的工具集。无论是简单的快速验证还是复杂的多区域场景模拟,开发者现在都能找到合适的API来实现自动化测试流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00