Azure Load Testing Python SDK 1.1.0b1版本发布:全面支持新一代负载测试能力
Azure Load Testing是微软Azure云平台提供的一项全托管负载测试服务,它允许开发者和测试工程师轻松创建和执行大规模负载测试,无需管理底层基础设施。通过Python SDK,开发者可以以编程方式与Azure Load Testing服务进行交互,实现测试的自动化管理和执行。
本次发布的1.1.0b1版本是一个重要的预览版更新,基于2025-05-01-preview API版本构建,引入了多项新功能和改进。值得注意的是,从这个版本开始,SDK将不再支持Python 3.7,最低要求提升至Python 3.8。
核心功能增强
1. 自动停止标准支持
新版本引入了AutoStop Criteria功能,允许用户为测试定义自动停止条件。通过Test模型中的auto_stop_criteria属性,用户可以设置各种条件来在特定情况下自动终止测试,例如当错误率超过阈值或响应时间达到不可接受的水平时。
2. RPS快速测试能力
对于需要快速验证系统性能的场景,新增了基于RPS(每秒请求数)的快速负载测试功能。开发者现在可以通过OptionalLoadTestConfig模型中的requests_per_second和max_response_time_in_ms参数直接指定期望的请求速率和最大响应时间阈值,简化了测试配置过程。
3. URL测试与JSON测试计划
为满足不同测试场景的需求,SDK现在支持URL测试类型和JSON格式的测试计划。新增的TestKind.URL枚举值和FileType.URL_TEST_CONFIG文件类型让开发者能够更灵活地定义测试行为。
4. Locust测试框架集成
对于习惯使用Locust框架的用户,新版本增加了原生支持。通过TestKind.Locust枚举值,开发者可以直接使用Locust脚本来定义负载测试场景,充分利用Locust的灵活性和易用性。
高级功能与架构改进
1. 多区域负载测试
现代分布式系统常常部署在多个区域以实现高可用性和低延迟。新版本通过LoadTestConfiguration模型中的regional_load_test_config属性支持多区域负载测试配置,允许开发者指定不同区域的负载分布比例,更真实地模拟全球用户访问模式。
2. 私有测试网络增强
对于安全性要求高的场景,新增了public_ip_disabled属性来禁用公共IP部署。这意味着负载测试生成器可以完全在私有网络中运行,不与公共互联网交互,满足严格的安全合规要求。
3. ZIP压缩包支持
为简化测试资源管理,现在支持直接上传ZIP格式的测试资源包。通过FileType.ZIPPED_ARTIFACTS枚举值,开发者可以将多个测试文件打包上传,减少上传操作次数并保持文件组织结构。
测试配置管理革新
1. 测试配置文件管理
新版本引入了完整的测试配置文件(Test Profile)管理能力。通过LoadTestAdministrationClient提供的方法集,开发者可以:
- 创建或更新测试配置(
create_or_update_test_profile) - 获取特定配置详情(
get_test_profile) - 删除不再需要的配置(
delete_test_profile) - 列出所有可用配置(
list_test_profiles)
2. 测试配置运行控制
配合测试配置文件,SDK还提供了测试配置运行(Test Profile Run)的管理接口。通过LoadTestRunClient中的方法,开发者能够:
- 启动测试配置运行(
begin_test_profile_run) - 获取运行状态和结果(
get_test_profile_run) - 清理完成的运行(
delete_test_profile_run) - 查看历史运行记录(
list_test_profile_runs)
升级建议与注意事项
对于现有用户,升级到1.1.0b1版本需要注意以下几点:
- Python版本要求已提升至3.8+,升级前请确保环境兼容
- 由于是预览版API,部分功能可能在正式版发布前会有调整
- 新引入的测试配置管理功能提供了更结构化的测试定义方式,建议逐步迁移到新模型
- 多区域测试功能需要相应的网络配置支持,使用时需确保测试环境准备充分
Azure Load Testing Python SDK的这次更新显著扩展了负载测试的能力边界,为云原生应用的性能验证提供了更强大、更灵活的工具集。无论是简单的快速验证还是复杂的多区域场景模拟,开发者现在都能找到合适的API来实现自动化测试流程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00