JohnTheRipper中Argon2-opencl插件处理高成本哈希时崩溃问题分析
问题背景
在密码安全领域,Argon2是一种获得密码哈希竞赛冠军的现代哈希算法,被广泛应用于密码存储保护。JohnTheRipper作为知名的密码分析工具,通过其Argon2-opencl插件支持利用GPU加速分析Argon2哈希。
近期发现,当处理某些极高成本的Argon2哈希时,Argon2-opencl插件会出现崩溃现象。具体表现为当尝试处理内存参数(m)设置为67108864(64MB)的哈希时,插件会抛出CL_INVALID_BUFFER_SIZE错误,导致无法继续执行。
问题复现与分析
测试人员使用NVIDIA GeForce RTX 2080 Ti显卡尝试处理以下两个模拟KeePassXC默认设置的哈希样本时触发了该问题:
$argon2d$v=19$m=67108864,t=30,p=2$ZGFtYWdlX2RvbmU$w9w3s5/zV8+PcAZlJhnTCOE+vBkZssmZf6jOq3dKv50
$argon2id$v=19$m=67108864,t=30,p=2$U2FMdHNBbFQ$Djwdq8LGcBSmvJAX8TPqELq0N8YVHEdk5bWb4tRy70k
错误信息显示为"CL_INVALID_BUFFER_SIZE (-61) error in opencl_argon2_fmt_plug.c:613 - Error creating memory buffer",这表明在尝试创建内存缓冲区时出现了问题。
问题根源
经过深入分析,发现问题出在哈希参数的理解上。KeePassXC在存储哈希时使用的内存参数(m)单位是KB,而JohnTheRipper的Argon2-opencl插件期望的是以块(block)为单位的参数值。67108864KB转换为块单位应该是65536(67108864/1024)。
这种单位不一致导致了内存分配请求远远超出GPU的实际可用内存,从而触发了OpenCL的缓冲区大小无效错误。
解决方案
正确的哈希表示应该是:
$argon2d$v=19$m=65536,t=30,p=2$ZGFtYWdlX2RvbmU$w9w3s5/zV8+PcAZlJhnTCOE+vBkZssmZf6jOq3dKv50
$argon2id$v=19$m=65536,t=30,p=2$U2FMdHNBbFQ$Djwdq8LGcBSmvJAX8TPqELq0N8YVHEdk5bWb4tRy70k
使用修正后的参数后,各GPU设备的性能表现如下:
- Radeon RX Vega: 16.99次/秒
- GeForce GTX 1080: 38.34次/秒
- GeForce RTX 2080 Ti: 87.88次/秒
技术建议
-
参数验证:在使用Argon2-opencl插件前,应确保内存参数(m)的单位正确,避免因单位误解导致内存分配失败。
-
错误处理改进:插件可以增加对输入参数的验证,当检测到异常大的内存请求时,提供更有意义的错误提示,帮助用户快速定位问题。
-
性能考量:即使是修正后的参数,30次迭代(t=30)的设置也会显著影响分析速度,这是Argon2设计的安全特性。在实际应用中,建议根据安全需求和硬件性能合理设置这些参数。
总结
这个问题揭示了不同系统间参数单位标准化的重要性。对于安全工具开发者而言,清晰的参数文档和严格的输入验证是避免此类问题的关键。对于用户而言,理解工具的参数含义和单位是正确使用的前提。JohnTheRipper团队通过社区协作快速定位并解决了这个问题,展现了开源项目的优势。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00