【亲测免费】 Flink 连接器 ClickHouse 教程
2026-01-18 10:01:16作者:邬祺芯Juliet
项目介绍
Flink-Connector-ClickHouse 是一个Apache Flink与ClickHouse数据库之间的高效数据交换组件,它允许开发者在Flink流处理作业中无缝地读取和写入ClickHouse数据。本项目由Itiny Cheng开发并维护,旨在提供一套简便易用且性能卓越的数据集成解决方案,特别是在实时分析和大数据处理场景中。
项目快速启动
要快速开始使用 Flink-Connector-ClickHouse,首先确保你的环境已安装Apache Flink及ClickHouse,并配置好相应的环境变量。以下是简单示例来展示如何将数据流写入ClickHouse。
环境准备
确保已经安装了Apache Flink,并且ClickHouse服务正在运行。
添加依赖
在你的Flink项目中,通过Maven或Gradle添加以下依赖:
<!-- Maven -->
<dependency>
<groupId>com.itinycheng</groupId>
<artifactId>flink-connector-clickhouse_${scala.binary.version}</artifactId>
<version>对应的版本号</version>
</dependency>
示例代码
编写一个简单的Flink程序来演示数据写入ClickHouse。
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class FlinkToClickHouseExample {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = env.readTextFile("path/to/input");
DataStream<Tuple2<String, Integer>> counts =
text.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) {
return new Tuple2<>(value, 1);
}
})
.keyBy(0)
.sum(1);
// 配置并执行写入ClickHouse的操作
counts.addSink(new ClickHouseSink("jdbc:clickhouse://localhost:8123/database", "table_name",
"column1, column2", "column1, column2",
"INSERT INTO table_name (column1, column2) VALUES (?, ?)"));
env.execute("Flink to ClickHouse Example");
}
}
请注意,你需要替换上述代码中的路径、版本号、ClickHouse服务器地址、数据库名、表名以及列名,以适应你的具体设置。
应用案例和最佳实践
在实际应用中,Flink-Connector-ClickHouse 可广泛用于实时日志分析、用户行为追踪、实时统计报表等场景。最佳实践包括但不限于:
- 实时指标计算:利用Flink的时间窗口功能,结合ClickHouse的强大查询能力,进行实时业务指标计算。
- 数据归档策略:实现从短期存储(如内存数据库)到长期存储(ClickHouse)的平滑迁移,以支持历史数据分析。
- 事件驱动的数据处理:结合Flink的CEP库,对特定事件模式做出响应,并将结果即时写入ClickHouse,以供进一步分析。
典型生态项目
在大数据生态系统中,Flink-Connector-ClickHouse 通常与其他工具和技术一起工作,例如:
- Apache Kafka:作为数据源或数据接收端,结合Kafka与Flink的连接器,可以构建强大的数据管道。
- ZooKeeper:当在分布式环境中运行Flink时,作为协调服务保障高可用性。
- Prometheus/Grafana:监控Flink任务的运行状态,并通过ClickHouse作为持久化存储,实现丰富的数据可视化。
通过整合这些生态项目,Flink-Connector-ClickHouse 能够在复杂的大数据处理架构中发挥核心作用,提供可靠和灵活的数据处理方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0137
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
503
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
298
347
一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
116
21
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.3 K
722
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1