Grafana Tempo分布式追踪系统中数据丢失问题分析与解决方案
问题背景
在Grafana Tempo分布式追踪系统的实际部署中,当使用OpenTelemetry Collector向Tempo集群发送追踪数据时,可能会遇到数据丢失的情况。具体表现为Collector日志中出现"Exporting failed. Dropping data"错误,并伴随"Permanent error: rpc error: code = Unknown desc = Ingester is shutting down"的错误信息。
问题本质分析
这个问题本质上反映了Tempo分布式架构中数据写入的可靠性机制。Tempo采用基于副本因子(Replication Factor, RF)的数据冗余策略来确保数据可靠性。在RF=3的配置下,Tempo要求每次写入操作必须成功写入至少2个Ingester节点才能被视为成功。
Tempo写入机制详解
Tempo的写入机制遵循分布式系统中的quorum原则,具体表现为:
- 写入quorum(w):设置为2,意味着每次写入必须至少成功写入2个Ingester节点
- 读取quorum(r):同样设置为2,查询时需要从至少2个节点获取数据
- 副本因子(RF):默认为3,表示每个追踪数据会被复制到3个不同的Ingester节点
这种配置满足分布式系统的一致性公式:w + r > RF (2+2>3),确保读取操作总能获取到最新的写入数据。
实际部署中的挑战
在Kubernetes环境中,特别是使用AWS Spot实例部署时,可能会遇到:
- 多个Ingester节点同时被回收(如Spot实例中断)
- 短时间内多个节点不可用
- 节点优雅关闭过程中的短暂不可用期
当不可用Ingester数量超过系统容忍度时(RF=3时最多容忍1个节点不可用),系统将无法完成写入quorum要求,导致数据写入失败。
解决方案与最佳实践
- 保持默认RF配置:不建议降低RF值,RF=3是生产环境推荐配置
- 增加Ingester节点数量:虽然增加节点数不能直接提高单个写入操作的容错能力,但可以分散风险
- 优化部署策略:
- 确保Ingester分布在不同的可用区
- 避免所有Ingester部署在同一批Spot实例上
- 监控与告警:
- 监控Ingester环状态
- 设置适当的Pod中断预算(PDB)
- 等待新架构:Tempo团队正在开发支持RF=1的新架构,将显著提高系统可用性
技术深度解析
Tempo的这种设计在分布式系统理论中被称为"严格quorum"系统。其核心优势在于:
- 强一致性保证:确保读取总能获取最新写入的数据
- 部分容错能力:允许少量节点故障而不影响服务
- 明确的失败边界:当超过容错能力时立即失败,而不是返回不一致数据
对于追踪系统这种对数据完整性要求高但对实时性要求相对宽松的场景,这种设计是合理的权衡。
总结
理解Tempo的写入机制和quorum原理对于正确部署和运维Tempo集群至关重要。在生产环境中,应保持RF=3的配置,并通过合理的部署策略和监控手段来最大化系统可用性。随着Tempo新架构的推出,未来将能够在不牺牲数据可靠性的前提下获得更高的部署灵活性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00