Grafana Tempo分布式追踪系统中数据丢失问题分析与解决方案
问题背景
在Grafana Tempo分布式追踪系统的实际部署中,当使用OpenTelemetry Collector向Tempo集群发送追踪数据时,可能会遇到数据丢失的情况。具体表现为Collector日志中出现"Exporting failed. Dropping data"错误,并伴随"Permanent error: rpc error: code = Unknown desc = Ingester is shutting down"的错误信息。
问题本质分析
这个问题本质上反映了Tempo分布式架构中数据写入的可靠性机制。Tempo采用基于副本因子(Replication Factor, RF)的数据冗余策略来确保数据可靠性。在RF=3的配置下,Tempo要求每次写入操作必须成功写入至少2个Ingester节点才能被视为成功。
Tempo写入机制详解
Tempo的写入机制遵循分布式系统中的quorum原则,具体表现为:
- 写入quorum(w):设置为2,意味着每次写入必须至少成功写入2个Ingester节点
- 读取quorum(r):同样设置为2,查询时需要从至少2个节点获取数据
- 副本因子(RF):默认为3,表示每个追踪数据会被复制到3个不同的Ingester节点
这种配置满足分布式系统的一致性公式:w + r > RF (2+2>3),确保读取操作总能获取到最新的写入数据。
实际部署中的挑战
在Kubernetes环境中,特别是使用AWS Spot实例部署时,可能会遇到:
- 多个Ingester节点同时被回收(如Spot实例中断)
- 短时间内多个节点不可用
- 节点优雅关闭过程中的短暂不可用期
当不可用Ingester数量超过系统容忍度时(RF=3时最多容忍1个节点不可用),系统将无法完成写入quorum要求,导致数据写入失败。
解决方案与最佳实践
- 保持默认RF配置:不建议降低RF值,RF=3是生产环境推荐配置
- 增加Ingester节点数量:虽然增加节点数不能直接提高单个写入操作的容错能力,但可以分散风险
- 优化部署策略:
- 确保Ingester分布在不同的可用区
- 避免所有Ingester部署在同一批Spot实例上
- 监控与告警:
- 监控Ingester环状态
- 设置适当的Pod中断预算(PDB)
- 等待新架构:Tempo团队正在开发支持RF=1的新架构,将显著提高系统可用性
技术深度解析
Tempo的这种设计在分布式系统理论中被称为"严格quorum"系统。其核心优势在于:
- 强一致性保证:确保读取总能获取最新写入的数据
- 部分容错能力:允许少量节点故障而不影响服务
- 明确的失败边界:当超过容错能力时立即失败,而不是返回不一致数据
对于追踪系统这种对数据完整性要求高但对实时性要求相对宽松的场景,这种设计是合理的权衡。
总结
理解Tempo的写入机制和quorum原理对于正确部署和运维Tempo集群至关重要。在生产环境中,应保持RF=3的配置,并通过合理的部署策略和监控手段来最大化系统可用性。随着Tempo新架构的推出,未来将能够在不牺牲数据可靠性的前提下获得更高的部署灵活性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00