Robusta KRR 资源推荐机制解析:多副本场景下的计算逻辑
核心概念
Robusta KRR(Kubernetes Resource Recommender)是 Kubernetes 资源推荐工具,它通过分析集群中工作负载的实际资源使用情况,为管理员提供资源配置优化建议。在多副本部署场景下,其计算逻辑尤为值得关注。
多副本推荐机制详解
当分析包含多个Pod副本的Deployment时,Robusta KRR会:
-
聚合指标采集:系统会收集Deployment下所有运行中Pod的资源使用指标(CPU、内存等),而非仅单个Pod的数据。
-
综合分析计算:基于所有副本的聚合使用情况,工具会计算出一个适用于每个Pod的资源推荐值。这意味着推荐值是针对单个Pod的配置建议,而非整个Deployment的总和。
-
推荐应用方式:用户应将推荐值直接应用到Deployment的资源配置中,这样新建的Pod都会自动继承这些优化后的资源设置。
实际案例分析
以一个包含2个Pod副本的Deployment为例:
- 当前配置:每个Pod请求2GB内存
- 推荐结果:建议将内存请求降至约2.93GB
这个2.93GB的推荐值是基于两个Pod的实际使用情况综合分析得出的单个Pod建议值。部署更新后,每个新创建的Pod都将使用这个优化后的内存配置。
技术实现要点
-
数据采样周期:系统会采集足够长时间窗口内的使用数据,避免瞬时峰值影响推荐准确性。
-
异常处理机制:自动识别并排除异常Pod的数据,确保推荐基于健康工作负载的表现。
-
安全缓冲设计:推荐值通常会包含适当的安全余量,防止实际运行中出现资源不足。
最佳实践建议
-
对于生产环境关键工作负载,建议先在小规模测试环境中验证推荐配置。
-
关注推荐结果中的严重级别(Severity)指示,优先处理CRITICAL级别的建议。
-
结合HPA(Horizontal Pod Autoscaler)使用效果更佳,实现动态资源调整。
通过理解Robusta KRR在多副本场景下的计算逻辑,管理员可以更准确地解读推荐结果,实现Kubernetes集群资源的高效利用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00