Datasketch项目中使用Redis存储MinHash的技术方案解析
2025-06-29 08:03:54作者:郦嵘贵Just
背景与需求场景
在数据相似性计算领域,MinHash算法因其高效性被广泛应用于海量数据的近似相似度计算。Datasketch作为Python生态中的优秀库,提供了MinHash和LSH(局部敏感哈希)的高效实现。在实际生产环境中,随着数据规模的增长,开发者往往需要将索引和特征数据存储在Redis等高性能存储系统中。
核心问题分析
从技术讨论中可以看出,用户在使用Datasketch时遇到了两个关键需求:
- 使用Redis作为MinHash LSH的存储后端(v1.6.5已支持)
- 同时希望将MinHash对象本身也存储在Redis中
当前版本(v1.1.1+)的MinHash仅支持pickle序列化,这给直接使用Redis存储带来了挑战。但深入分析后可以发现,实际上存在更优雅的解决方案。
技术实现方案
方案一:利用LSH索引的Redis存储
当使用Redis作为MinHashLSH的存储后端时,MinHash数据实际上已经以某种形式存在于Redis中。开发者可以通过以下方式利用这一特性:
from datasketch import MinHashLSH
# 初始化时指定Redis配置
storage_config = {
'type': 'redis',
'basename': 'your_namespace',
'redis': {'host': 'localhost', 'port': 6379}
}
lsh = MinHashLSH(threshold=0.5, num_perm=128, storage_config=storage_config)
方案二:自定义序列化方案
虽然MinHash默认使用pickle,但开发者可以通过以下方式实现自定义存储:
- 提取MinHash的核心参数(哈希值数组、排列数等)
- 将这些参数转换为Redis友好的格式(如JSON或二进制)
- 存储时进行转换,读取时重建MinHash对象
def save_minhash_to_redis(mh, redis_client, key):
data = {
'num_perm': mh.num_perm,
'hashvalues': mh.hashvalues.tolist()
}
redis_client.set(key, json.dumps(data))
def load_minhash_from_redis(redis_client, key):
data = json.loads(redis_client.get(key))
mh = MinHash(num_perm=data['num_perm'])
mh.hashvalues = np.array(data['hashvalues'])
return mh
生产环境建议
- 命名空间管理:为不同的MinHash集合使用不同的basename,避免键冲突
- 性能优化:对于大规模数据,考虑使用Redis管道(pipeline)批量操作
- 容错处理:实现适当的重试机制处理Redis连接问题
- 内存管理:监控Redis内存使用,必要时启用淘汰策略
技术演进展望
虽然当前版本有序列化限制,但未来版本可能会:
- 提供更灵活的序列化接口
- 内置对更多存储后端的支持
- 优化大规模数据下的存储效率
总结
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19