Datasketch项目中使用Redis存储MinHash的技术方案解析
2025-06-29 19:10:30作者:郦嵘贵Just
背景与需求场景
在数据相似性计算领域,MinHash算法因其高效性被广泛应用于海量数据的近似相似度计算。Datasketch作为Python生态中的优秀库,提供了MinHash和LSH(局部敏感哈希)的高效实现。在实际生产环境中,随着数据规模的增长,开发者往往需要将索引和特征数据存储在Redis等高性能存储系统中。
核心问题分析
从技术讨论中可以看出,用户在使用Datasketch时遇到了两个关键需求:
- 使用Redis作为MinHash LSH的存储后端(v1.6.5已支持)
- 同时希望将MinHash对象本身也存储在Redis中
当前版本(v1.1.1+)的MinHash仅支持pickle序列化,这给直接使用Redis存储带来了挑战。但深入分析后可以发现,实际上存在更优雅的解决方案。
技术实现方案
方案一:利用LSH索引的Redis存储
当使用Redis作为MinHashLSH的存储后端时,MinHash数据实际上已经以某种形式存在于Redis中。开发者可以通过以下方式利用这一特性:
from datasketch import MinHashLSH
# 初始化时指定Redis配置
storage_config = {
'type': 'redis',
'basename': 'your_namespace',
'redis': {'host': 'localhost', 'port': 6379}
}
lsh = MinHashLSH(threshold=0.5, num_perm=128, storage_config=storage_config)
方案二:自定义序列化方案
虽然MinHash默认使用pickle,但开发者可以通过以下方式实现自定义存储:
- 提取MinHash的核心参数(哈希值数组、排列数等)
- 将这些参数转换为Redis友好的格式(如JSON或二进制)
- 存储时进行转换,读取时重建MinHash对象
def save_minhash_to_redis(mh, redis_client, key):
data = {
'num_perm': mh.num_perm,
'hashvalues': mh.hashvalues.tolist()
}
redis_client.set(key, json.dumps(data))
def load_minhash_from_redis(redis_client, key):
data = json.loads(redis_client.get(key))
mh = MinHash(num_perm=data['num_perm'])
mh.hashvalues = np.array(data['hashvalues'])
return mh
生产环境建议
- 命名空间管理:为不同的MinHash集合使用不同的basename,避免键冲突
- 性能优化:对于大规模数据,考虑使用Redis管道(pipeline)批量操作
- 容错处理:实现适当的重试机制处理Redis连接问题
- 内存管理:监控Redis内存使用,必要时启用淘汰策略
技术演进展望
虽然当前版本有序列化限制,但未来版本可能会:
- 提供更灵活的序列化接口
- 内置对更多存储后端的支持
- 优化大规模数据下的存储效率
总结
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136