VideoLDM 开源项目教程
2024-08-17 03:18:10作者:卓艾滢Kingsley
项目介绍
VideoLDM 是一个非官方的 PyTorch 实现,基于论文 "Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models"。该项目旨在通过潜在扩散模型(LDM)实现高分辨率的视频合成。VideoLDM 能够生成高分辨率、时间一致且多样化的视频,特别适用于模拟野外驾驶数据和创意内容创作。
项目快速启动
安装依赖
首先,确保你已经安装了 Python 和 PyTorch。然后,克隆项目仓库并安装必要的依赖:
git clone https://github.com/srpkdyy/VideoLDM.git
cd VideoLDM
pip install -r requirements.txt
加载预训练模型
使用以下代码加载预训练的 VideoLDM 模型:
from videoldm import VideoLDM
model = VideoLDM.from_pretrained('CompVis/stable-diffusion-v1-4', subfolder='unet', low_cpu_mem_usage=False)
生成视频
使用以下代码生成视频:
# 设置文本提示
text_prompt = "A teddy bear is playing the electric guitar high definition 4k"
# 生成视频
video = model.generate_video(text_prompt)
# 保存视频
video.save("output_video.mp4")
应用案例和最佳实践
模拟野外驾驶数据
VideoLDM 可以用于生成高分辨率的野外驾驶视频,这对于自动驾驶系统的训练和测试非常有用。通过训练预测模型,可以生成长时间的时间一致视频,从而模拟真实的驾驶场景。
创意内容创作
VideoLDM 支持个性化视频生成,可以根据文本提示生成创意视频内容。例如,输入 "A teddy bear is playing the electric guitar high definition 4k",可以生成一个泰迪熊弹电吉他的高分辨率视频。
典型生态项目
Stable Diffusion
VideoLDM 基于 Stable Diffusion 模型,这是一个公开可用的最先进的文本到图像 LDM。通过引入时间维度到潜在空间扩散模型,并对其进行微调,VideoLDM 将其转化为一个高效的文本到视频模型。
DreamBooth
DreamBooth 是一个用于个性化图像生成的项目,VideoLDM 借鉴了 DreamBooth 的方法,通过在图像 LDM 骨干中插入时间层,实现了文本到视频的合成。
通过这些生态项目的结合,VideoLDM 提供了一个强大的工具,用于高分辨率视频合成和创意内容创作。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
248
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
451
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885