解析R-CNN:深度实例级人体分析的利器
2024-05-22 12:31:17作者:傅爽业Veleda
项目简介
解析R-CNN是来自CVPR 2019的一篇重要论文的官方实现,它主要解决实例级别的人体理解问题,包括人类姿态估计和人体部位分割等任务。这个开源项目提供了PyTorch版本的代码,并已在多个基准测试数据集上取得了显著的成绩。
项目技术分析
解析R-CNN的核心是一个基于 Faster R-CNN 的网络架构,该架构扩展了检测头,以同时处理目标检测、语义分割和实例分割。关键创新在于“解析分支”(Parsing Branch),它可以对每个检测到的人体实例进行详细的结构化信息解析,如人体部位识别和二维坐标定位。以下是其核心架构的图示:

项目提供了预训练模型,可以在不同的数据集上直接应用或用于进一步的训练。
应用场景
- 人体姿态估计算法:解析R-CNN适用于实时视频监控系统,能够准确地识别人体各个关节的位置,对于智能安全和运动分析领域具有重要意义。
- 人像分割:在图像编辑和增强现实应用程序中,精确的部位分割可以帮助实现更加自然的合成效果。
- 研究与教学:为学术研究者和学生提供了一个强大的工具,帮助他们深入理解实例级解析任务并探索新的方法。
项目特点
- 高效性能:在CIHP、MHP-v2和DensePose_COCO数据集上展示了出色的性能,尤其是在人体部分分割和姿态估计方面。
- 灵活可扩展:支持多种后端网络架构,例如ResNet-50和X-101-32x8d,以及多GPU训练和评估。
- 易用性:提供详细的安装指南和数据结构说明,方便用户快速集成到自己的工作流程中。
- 持续更新:项目持续维护,不断优化,并随着新资源和模型的发布而更新。
要使用解析R-CNN,只需遵循提供的安装指南,并按照数据结构要求准备数据集。通过运行提供的训练脚本,即可开始定制自己的模型。结果可视化功能也将很快推出。
如果你对实例级人体分析感兴趣,或者正在寻找一个强大且易于使用的解决方案,那么解析R-CNN绝对值得尝试。记得在你的工作中引用原论文,以支持作者的研究工作:
@inproceedings{yang2019cvpr,
title = {Parsing R-CNN for Instance-Level Human Analysis},
author = {Lu Yang and Qing Song and Zhihui Wang and Ming Jiang},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}
立即加入这个社区,解锁解析R-CNN的强大潜力,开启你的实例级人体分析之旅!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350