LLaMA-Factory项目中的DeepSeek-Coder-V2-Instruct模型训练问题分析与解决方案
2025-05-01 09:16:49作者:柯茵沙
问题背景
在使用LLaMA-Factory项目训练DeepSeek-Coder-V2-Instruct(236B)大模型时,研究人员遇到了一个典型的大规模分布式训练问题。该问题发生在使用6个节点共48张GPU卡,采用zero3-offload策略进行训练的场景下。
问题现象
训练过程本身能够正常进行,但在保存检查点(checkpoint)时出现了失败。具体表现为:
- 训练过程中GPU显存被完全占用
- 训练步骤(steps)停止不前
- 最终系统报出显存不足的错误(CUDA out of memory)
- 错误信息显示尝试分配3.39GiB显存失败,而GPU上仅有约2GiB的剩余空间
技术分析
显存管理问题
从错误日志中可以观察到几个关键点:
- 每张GPU的总容量为79.32GiB
- 训练过程中PyTorch已分配约73.29GiB显存
- 还有约1.6GiB显存被PyTorch预留但未分配
- 实际可用的空闲显存仅剩约2GiB
Zero3-Offload策略特点
Zero3-Offload是DeepSpeed框架中的一种优化策略,主要特点包括:
- 将优化器状态、梯度和模型参数分区到不同的GPU上
- 在训练过程中动态地在GPU和CPU内存之间转移数据
- 显著减少单个GPU上的显存占用
检查点保存机制
在保存模型检查点时,系统需要:
- 收集分布在各个GPU上的模型参数
- 将完整的模型状态保存到磁盘
- 这个过程需要额外的临时显存
根本原因
问题的核心在于检查点保存机制与Zero3-Offload策略的交互:
- 在Zero3策略下,模型参数被分区存储
- 保存检查点需要临时聚合完整模型参数
- 这个聚合过程需要额外的显存空间
- 训练后期显存已被充分利用,无法提供足够的临时空间
解决方案
仓库所有者提供的解决方案是启用save_only_model选项。这个方案的技术原理是:
- 只保存模型参数,不保存优化器状态
- 显著减少检查点保存时所需的临时显存
- 避免了完整模型状态的聚合过程
实践建议
对于大规模模型训练,特别是使用Zero3等分布式策略时,建议:
- 合理配置检查点保存频率
- 考虑使用模型并行等策略进一步降低显存需求
- 监控训练过程中的显存使用情况
- 在保存检查点前预留足够的显存余量
总结
LLaMA-Factory项目中遇到的这个问题展示了大模型训练中的典型挑战。通过理解分布式训练策略的特点和检查点保存机制,我们能够找到有效的解决方案。save_only_model选项提供了一种简单而有效的方法来解决检查点保存时的显存不足问题,为大模型训练提供了更稳定的环境。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
238
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
144
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
218
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869