contextgem:项目的核心功能/场景
contextgem 是一个开源的轻量级语言模型框架,它致力于以极少的代码量从文档中提取结构化数据和见解。
项目介绍
contextgem 旨在解决从文档中提取结构化数据时遇到的复杂性问题。现有的许多流行框架需要大量的样板代码来提取基本信息,这增加了开发时间和难度。contextgem 通过提供一套灵活、直观的框架来解决这一挑战,它能够以最小的努力提取文档中的结构化数据和见解,复杂的部分则通过强大的抽象处理,从而消除了样板代码,减少了开发开销。
项目技术分析
contextgem 采用 Python 编写,支持多种语言模型,如 GPT-4 等,并提供了自动化数据建模和验证器,使得从文档中提取信息变得更加高效和准确。项目利用了先进的神经网络分割技术(SaT)和动态提示自动化,进一步简化了提取流程。此外,contextgem 还支持多语言输入输出,无需额外的提示。
项目的架构设计考虑了易用性和扩展性,它提供了单一、统一的数据提取管道,支持声明式、可重用和完全序列化的工作流。这使得用户可以轻松构建复杂的提取工作流,并通过简单的 API 创建多级提取管道。
项目及技术应用场景
contextgem 适用于各种需要从文档中提取结构化数据的场景,包括但不限于:
- 文档分析和总结:自动提取文档中的关键信息和要点。
- 实体识别和关系提取:在文本中识别特定实体和它们之间的关系。
- 法律文件审查:自动提取合同中的关键条款和异常条款。
- 内容审核和分类:对文档内容进行自动分类和标记。
- 教育和学术研究:从学术论文中提取关键概念和事实。
项目特点
contextgem 的特点在于它提供了一系列内置的抽象,使得从文档中提取信息变得更加简单和高效。以下是一些关键特点:
- 自动化动态提示:自动生成动态提示,减少手动提示的需求。
- 自动化数据建模和验证:自动进行数据建模和验证,确保提取的数据质量和准确性。
- 精确的粒度引用映射:支持段落和句子级别的精确引用映射。
- 推理支持:提供理由支持,解释提取背后的逻辑。
- 神经网络分割:利用神经网络分割技术,提高提取的准确性。
- 多语言支持:无需额外提示即可支持多种语言。
- 单一提取管道:提供单一、统一的数据提取管道,易于维护和扩展。
- 多级提取管道:支持创建多级提取管道,满足复杂的需求。
以下是 contextgem 与其他流行的 LLM 框架的对比表格:
| 特性 | ContextGem | 其他LLM框架 |
|---|---|---|
| 自动化动态提示 | 🟢 | ◯ |
| 自动化数据建模和验证 | 🟢 | ◯ |
| 精确的粒度引用映射 | 🟢 | ◯ |
| 推理支持 | 🟢 | ◯ |
| 神经网络分割 | 🟢 | ◯ |
| 多语言支持 | 🟢 | ◯ |
| 单一提取管道 | 🟢 | 🟡 |
| 多级提取管道 | 🟢 | 🟡 |
🟢 - 完全支持,无需额外设置
🟡 - 部分支持,需要额外设置
◯ - 不支持,需要自定义逻辑
通过使用 contextgem,用户可以轻松实现以下功能:
- 从文档中提取结构化数据。
- 识别和分析文档中的关键方面。
- 从文档中提取特定的概念。
- 通过简单的 API 构建复杂的数据提取工作流。
- 创建多级提取管道。
contextgem 的安装非常简单,只需要使用 pip 命令即可:
pip install -U contextgem
快速入门示例也展示了如何使用 contextgem 从文档中提取异常信息:
import os
from contextgem import Document, DocumentLLM, StringConcept
doc = Document(
raw_text="Consultancy Agreement...\nThis agreement is governed by the laws of Norway...\n"
)
doc.concepts = [
StringConcept(
name="Anomalies",
description="Anomalies in the document",
add_references=True,
reference_depth="sentences",
add_justifications=True,
justification_depth="brief",
)
]
llm = DocumentLLM(
model="openai/gpt-4o-mini",
api_key=os.environ.get("CONTEXTGEM_OPENAI_API_KEY"),
)
doc = llm.extract_all(doc)
print(doc.concepts[0].extracted_items)
通过上述功能和分析,contextgem 显然是一个强大且易于使用的工具,能够为处理文档数据的开发者提供极大的便利。无论是从提取结构化数据,还是构建复杂的数据提取流程,contextgem 都是一个值得尝试的开源项目。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00