解决Kube-Hetzner部署中system-upgrade-controller超时问题
在使用Terraform部署Kube-Hetzner集群时,用户可能会遇到system-upgrade-controller超时的问题。本文将深入分析这一问题的成因,并提供详细的解决方案。
问题现象
在部署过程中,terraform apply命令执行时会在等待system-upgrade-controller部署就绪时超时,错误信息显示为:
error: timed out waiting for the condition on deployments/system-upgrade-controller
根本原因分析
经过排查,这个问题通常由以下几个因素导致:
-
资源不足:特别是当使用Cilium作为CNI插件时,较新版本的Cilium对内存需求较高,如果控制平面节点配置过低(如使用cpx11实例类型),可能导致组件无法正常启动。
-
网络配置问题:某些网络环境可能会影响Kubernetes组件间的通信。
-
版本兼容性问题:使用较旧版本的Kube-Hetzner模块可能存在已知缺陷。
解决方案
升级控制平面节点规格
将控制平面节点的实例类型从cpx11升级到cax11(ARM架构,性价比更高且性能更好):
control_plane_nodepools = [
{
name = "control-plane-fsn1",
server_type = "cax11", # 从cpx11改为cax11
location = "fsn1",
count = 1
},
# 其他控制平面节点配置...
]
确保使用最新模块版本
在Terraform配置中明确指定使用最新版本的Kube-Hetzner模块:
module "kube-hetzner" {
source = "kube-hetzner/kube-hetzner/hcloud"
version = "2.11.7" # 确保使用最新稳定版本
# 其他配置...
}
部署前清理环境
在重新部署前,执行以下清理步骤:
- 运行
terraform destroy清理现有资源 - 使用
cleanupkh脚本(如果已安装)确保完全清理 - 删除本地Terraform状态文件(如有必要)
最佳实践建议
-
资源规划:对于生产环境,建议控制平面节点至少使用cax11或更高规格的实例类型,特别是当使用功能丰富的CNI如Cilium时。
-
版本控制:始终明确指定模块版本,避免使用主分支或本地路径,除非有特殊需求。
-
渐进式部署:可以先部署最小规模的集群(如单控制平面节点)验证配置,再逐步扩展。
-
监控资源使用:部署完成后,使用kubectl top nodes监控节点资源使用情况,确保没有资源瓶颈。
总结
Kube-Hetzner部署中的system-upgrade-controller超时问题通常与资源不足有关,特别是当使用内存密集型组件如Cilium时。通过升级控制平面节点规格、使用最新模块版本以及确保干净的部署环境,可以有效解决这一问题。对于生产环境,合理的资源规划和版本控制是确保集群稳定运行的关键。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00