Haskell语言服务器测试套件中避免使用expectFail的最佳实践
2025-06-28 01:33:00作者:傅爽业Veleda
在Haskell语言服务器(HLS)项目的测试开发中,测试套件中广泛使用了expectFail函数来标记预期会失败的测试用例。然而,这种做法存在明显的技术缺陷,值得我们深入探讨并寻找更优的解决方案。
expectFail的问题本质
expectFail函数来自tasty-expected-failure测试框架,它的核心行为是将任何测试失败都视为成功。这种设计虽然简单直接,但却隐藏了测试失败的具体原因,导致我们无法准确判断:
- 测试是否因为预期的原因失败
- 测试是否因为其他意外原因失败
- 测试失败的具体表现是否符合预期
这种信息丢失使得测试的价值大打折扣,长期来看会降低测试套件的可靠性。
更优的替代方案
经过项目维护者的讨论,我们确定了以下几种更优的实践方式:
1. 精确断言替代模糊预期
对于已知会失败的测试,我们应该使用精确的断言来验证具体的失败表现,而不是简单地标记为"预期失败"。例如:
-- 不推荐
testCase "某个测试" $ expectFail $ do
someTestFunction
-- 推荐
testCase "某个测试" $ do
result <- someTestFunction
result @?= expectedValue
-- 添加注释说明为什么这个结果是错误的
2. 使用专门的测试辅助函数
项目引入了专门的测试辅助函数来更好地表达测试意图:
hoverTestExpectFail :: TestName -> Position -> T.Text -> T.Text -> TestTree
hoverTestExpectFail name pos _ideal expected =
hoverTest name pos expected
更进一步,可以使用类型系统来增强表达力:
data ExpectBroken a where
IdealBehavior :: a -> ExpectBroken a
CurrentBehavior :: a -> ExpectBroken a
hoverTestExpectFail' :: TestName -> Position -> ExpectBroken BrokenIdeal -> ExpectBroken BrokenCurrent -> TestTree
hoverTestExpectFail' name pos _ expected =
hoverTest name pos (unCurrent expected)
这种设计使得测试用例更加清晰:
hoverTestExpectFail'
"import"
(Position 2 18)
(IdealBehavior "Control.Monad**") -- 理想行为:不应有额外换行
(CurrentBehavior "Control.Monad\n\n") -- 当前实际行为
3. 平台特定的测试禁用
对于确实需要在特定平台禁用的测试,expectFail仍然可以谨慎使用,但应该:
- 明确注释说明禁用原因
- 限制在特定平台条件
- 定期检查这些测试是否仍然需要禁用
实施效果
通过这一改进,HLS测试套件获得了以下提升:
- 测试意图更加明确,通过类型和函数名就能理解测试目的
- 失败原因更加透明,可以准确知道测试为何失败
- 便于追踪问题,当"当前错误行为"变为"理想行为"时,可以轻松识别
- 测试文档化,通过注释和类型记录了预期的正确行为
总结
在Haskell语言服务器这样的重要开发工具中,测试质量直接关系到工具的可靠性。避免使用expectFail而改用更精确的测试表达方式,是提升测试套件质量的重要一步。这一实践不仅适用于HLS项目,对于任何重视测试质量的Haskell项目都有借鉴意义。
通过类型驱动的测试设计和精确的失败断言,我们可以构建更可靠、更易维护的测试套件,为项目的长期健康发展奠定坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493