Haskell语言服务器测试套件中避免使用expectFail的最佳实践
2025-06-28 09:49:57作者:傅爽业Veleda
在Haskell语言服务器(HLS)项目的测试开发中,测试套件中广泛使用了expectFail
函数来标记预期会失败的测试用例。然而,这种做法存在明显的技术缺陷,值得我们深入探讨并寻找更优的解决方案。
expectFail的问题本质
expectFail
函数来自tasty-expected-failure测试框架,它的核心行为是将任何测试失败都视为成功。这种设计虽然简单直接,但却隐藏了测试失败的具体原因,导致我们无法准确判断:
- 测试是否因为预期的原因失败
- 测试是否因为其他意外原因失败
- 测试失败的具体表现是否符合预期
这种信息丢失使得测试的价值大打折扣,长期来看会降低测试套件的可靠性。
更优的替代方案
经过项目维护者的讨论,我们确定了以下几种更优的实践方式:
1. 精确断言替代模糊预期
对于已知会失败的测试,我们应该使用精确的断言来验证具体的失败表现,而不是简单地标记为"预期失败"。例如:
-- 不推荐
testCase "某个测试" $ expectFail $ do
someTestFunction
-- 推荐
testCase "某个测试" $ do
result <- someTestFunction
result @?= expectedValue
-- 添加注释说明为什么这个结果是错误的
2. 使用专门的测试辅助函数
项目引入了专门的测试辅助函数来更好地表达测试意图:
hoverTestExpectFail :: TestName -> Position -> T.Text -> T.Text -> TestTree
hoverTestExpectFail name pos _ideal expected =
hoverTest name pos expected
更进一步,可以使用类型系统来增强表达力:
data ExpectBroken a where
IdealBehavior :: a -> ExpectBroken a
CurrentBehavior :: a -> ExpectBroken a
hoverTestExpectFail' :: TestName -> Position -> ExpectBroken BrokenIdeal -> ExpectBroken BrokenCurrent -> TestTree
hoverTestExpectFail' name pos _ expected =
hoverTest name pos (unCurrent expected)
这种设计使得测试用例更加清晰:
hoverTestExpectFail'
"import"
(Position 2 18)
(IdealBehavior "Control.Monad**") -- 理想行为:不应有额外换行
(CurrentBehavior "Control.Monad\n\n") -- 当前实际行为
3. 平台特定的测试禁用
对于确实需要在特定平台禁用的测试,expectFail
仍然可以谨慎使用,但应该:
- 明确注释说明禁用原因
- 限制在特定平台条件
- 定期检查这些测试是否仍然需要禁用
实施效果
通过这一改进,HLS测试套件获得了以下提升:
- 测试意图更加明确,通过类型和函数名就能理解测试目的
- 失败原因更加透明,可以准确知道测试为何失败
- 便于追踪问题,当"当前错误行为"变为"理想行为"时,可以轻松识别
- 测试文档化,通过注释和类型记录了预期的正确行为
总结
在Haskell语言服务器这样的重要开发工具中,测试质量直接关系到工具的可靠性。避免使用expectFail
而改用更精确的测试表达方式,是提升测试套件质量的重要一步。这一实践不仅适用于HLS项目,对于任何重视测试质量的Haskell项目都有借鉴意义。
通过类型驱动的测试设计和精确的失败断言,我们可以构建更可靠、更易维护的测试套件,为项目的长期健康发展奠定坚实基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
455

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4