SUMO仿真中自定义边缘数据的可视化方法
2025-06-28 01:36:13作者:齐冠琰
在SUMO交通仿真系统中,边缘数据(edgedata)是分析路网性能的重要信息来源。虽然SUMO提供了丰富的内置边缘指标,但实际项目中我们经常需要可视化一些自定义指标,如停车位占用率等。本文将详细介绍如何在SUMO中实现自定义边缘数据的可视化。
自定义边缘数据的基本原理
SUMO的plot_net_dump.py工具能够可视化边缘数据XML文件中的各种指标。该文件的标准结构包含多个时间间隔(interval)元素,每个interval下又包含多个edge元素,edge元素中可以定义任意属性作为可视化指标。
方法一:直接生成标准格式的XML文件
最直接的方法是按照SUMO的edgeData格式要求生成XML文件。文件结构需要满足以下要求:
- 根元素为edgeData
- 包含多个interval子元素,每个interval需定义begin和end属性表示时间范围
- 每个interval下包含多个edge子元素,每个edge需定义id属性
- edge元素中可以添加任意自定义属性作为可视化指标
示例代码框架如下:
with open('custom_edgedata.xml', 'w') as f:
f.write('<edgeData>\n')
for time in simulation_times:
f.write(f'<interval begin="{time}" end="{time+step}">\n')
for edge in network_edges:
occupancy = calculate_parking_occupancy(edge)
f.write(f'<edge id="{edge.id}" parkingOccupancy="{occupancy}"/>\n')
f.write('</interval>\n')
f.write('</edgeData>')
方法二:扩展现有edgeData文件
如果已有edgeData文件,可以使用sumolib库进行扩展:
from sumolib import xml
# 假设已有停车位占用数据
parking_data = {
"edge1": 0.75,
"edge2": 0.32,
# 其他边缘数据...
}
with open('extended_edgedata.xml', 'w') as outf:
outf.write('<edgeData>\n')
# 解析现有edgeData文件
for interval in xml.parse('original_edgedata.xml', 'interval'):
for edge in interval.edge:
# 为每个edge添加自定义属性
edge.setAttribute('parkingOccupancy', parking_data.get(edge.id, 0))
outf.write(interval.toXML())
outf.write('</edgeData>\n')
可视化自定义数据
生成文件后,使用plot_net_dump.py工具进行可视化:
python plot_net_dump.py -n your_network.net.xml -i custom_edgedata.xml --attributes parkingOccupancy
注意事项
- 属性名称应避免使用SUMO保留关键字
- 时间间隔设置应与仿真设置一致
- 数值型属性应确保格式正确
- 对于大量数据,建议分批处理以避免内存问题
通过上述方法,用户可以灵活地将各种自定义指标集成到SUMO的可视化分析中,大大扩展了SUMO在交通仿真研究中的应用范围。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
211