Ludusavi项目中的Heroic游戏启动器存档检测问题分析
问题背景
Ludusavi是一款专注于游戏存档备份与恢复的开源工具。在最新版本v0.28.0中,用户报告了一个关于Heroic游戏启动器存档检测的问题。Heroic是一款支持多平台的游戏启动器,能够管理来自GOG、Epic、Amazon等平台的游戏。用户发现Ludusavi无法正确检测到通过Heroic安装的游戏存档,特别是《死亡搁浅》这款游戏。
问题现象
具体表现为:
- 对于通过Heroic安装的《组织:最终版》,Ludusavi只能检测到Steam版本的存档,而忽略了Heroic版本的存档
- 对于《死亡搁浅》游戏,Ludusavi完全无法检测到任何存档文件
- 日志显示Ludusavi仅检测到了Heroic中的两款游戏,而实际上用户安装了更多游戏
技术分析
通过分析日志和用户提供的配置文件,我们发现问题的根源在于:
-
路径检测机制不完善:Ludusavi在检测Heroic游戏时,仅查找了特定路径下的配置文件(installed.json),而Heroic在不同情况下会将游戏信息存储在不同位置。特别是对于Epic平台的游戏,信息存储在legendary_library.json文件中。
-
云同步设置传播问题:当用户设置"不备份有云支持的游戏"时,该设置会跨平台传播。例如,如果Steam版本的《组织》有云同步,那么即使GOG版本没有云同步,Ludusavi也会跳过所有版本的存档备份。
-
存档路径多样性:不同游戏在不同平台下的存档路径差异很大。例如《组织》的存档可能出现在多个位置:
- 游戏安装目录下的My Games子目录
- 用户文档目录下的My Games文件夹
- Wine/Proton前缀中的虚拟Windows文档目录
解决方案
开发者针对这些问题进行了以下改进:
-
扩展配置文件检测范围:除了installed.json外,现在还会检查legendary_library.json文件,确保能发现所有Epic平台的游戏。
-
优化路径检测逻辑:对于Heroic启动的游戏,会检查更多可能的存档路径变体,包括:
- 游戏安装目录下的各种可能子目录
- Wine/Proton前缀中的各种虚拟Windows路径
- 用户文档目录的标准位置
-
改进云同步处理逻辑:虽然保留了跨平台传播的特性,但在代码中增加了更详细的注释,帮助用户理解这一设计决策的原因。
验证结果
测试版本成功检测到了《死亡搁浅》的所有存档文件,包括:
- 自动存档(autosave0到autosaveN)
- 快速存档(quicksave0到quicksaveN)
- 所有检查点数据(checkpoint.dat)
存档总大小约22.5MB,全部位于Heroic的Wine前缀目录中。
技术建议
对于使用Ludusavi备份Heroic游戏存档的用户,建议:
- 确保使用最新版本的Ludusavi
- 检查游戏存档的实际位置,必要时手动添加到备份配置中
- 理解云同步设置的传播特性,根据实际需求配置
- 对于特殊情况的游戏,可以查看日志文件获取详细检测过程
总结
这次问题修复展示了Ludusavi对多平台游戏启动器的支持在不断改进。通过分析具体案例,开发者能够优化检测逻辑,提高工具的兼容性。对于游戏存档管理这种复杂场景,工具需要不断适应各种边缘情况,而用户反馈在这个过程中起着至关重要的作用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00