Ludusavi项目中的Heroic游戏启动器存档检测问题分析
问题背景
Ludusavi是一款专注于游戏存档备份与恢复的开源工具。在最新版本v0.28.0中,用户报告了一个关于Heroic游戏启动器存档检测的问题。Heroic是一款支持多平台的游戏启动器,能够管理来自GOG、Epic、Amazon等平台的游戏。用户发现Ludusavi无法正确检测到通过Heroic安装的游戏存档,特别是《死亡搁浅》这款游戏。
问题现象
具体表现为:
- 对于通过Heroic安装的《组织:最终版》,Ludusavi只能检测到Steam版本的存档,而忽略了Heroic版本的存档
- 对于《死亡搁浅》游戏,Ludusavi完全无法检测到任何存档文件
- 日志显示Ludusavi仅检测到了Heroic中的两款游戏,而实际上用户安装了更多游戏
技术分析
通过分析日志和用户提供的配置文件,我们发现问题的根源在于:
-
路径检测机制不完善:Ludusavi在检测Heroic游戏时,仅查找了特定路径下的配置文件(installed.json),而Heroic在不同情况下会将游戏信息存储在不同位置。特别是对于Epic平台的游戏,信息存储在legendary_library.json文件中。
-
云同步设置传播问题:当用户设置"不备份有云支持的游戏"时,该设置会跨平台传播。例如,如果Steam版本的《组织》有云同步,那么即使GOG版本没有云同步,Ludusavi也会跳过所有版本的存档备份。
-
存档路径多样性:不同游戏在不同平台下的存档路径差异很大。例如《组织》的存档可能出现在多个位置:
- 游戏安装目录下的My Games子目录
- 用户文档目录下的My Games文件夹
- Wine/Proton前缀中的虚拟Windows文档目录
解决方案
开发者针对这些问题进行了以下改进:
-
扩展配置文件检测范围:除了installed.json外,现在还会检查legendary_library.json文件,确保能发现所有Epic平台的游戏。
-
优化路径检测逻辑:对于Heroic启动的游戏,会检查更多可能的存档路径变体,包括:
- 游戏安装目录下的各种可能子目录
- Wine/Proton前缀中的各种虚拟Windows路径
- 用户文档目录的标准位置
-
改进云同步处理逻辑:虽然保留了跨平台传播的特性,但在代码中增加了更详细的注释,帮助用户理解这一设计决策的原因。
验证结果
测试版本成功检测到了《死亡搁浅》的所有存档文件,包括:
- 自动存档(autosave0到autosaveN)
- 快速存档(quicksave0到quicksaveN)
- 所有检查点数据(checkpoint.dat)
存档总大小约22.5MB,全部位于Heroic的Wine前缀目录中。
技术建议
对于使用Ludusavi备份Heroic游戏存档的用户,建议:
- 确保使用最新版本的Ludusavi
- 检查游戏存档的实际位置,必要时手动添加到备份配置中
- 理解云同步设置的传播特性,根据实际需求配置
- 对于特殊情况的游戏,可以查看日志文件获取详细检测过程
总结
这次问题修复展示了Ludusavi对多平台游戏启动器的支持在不断改进。通过分析具体案例,开发者能够优化检测逻辑,提高工具的兼容性。对于游戏存档管理这种复杂场景,工具需要不断适应各种边缘情况,而用户反馈在这个过程中起着至关重要的作用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









