Knative Serving中实现自定义指标与缩容至零的探索
在云原生应用开发中,Knative Serving作为一款优秀的Serverless框架,其自动扩缩容能力一直是开发者关注的焦点。本文将深入探讨如何在Knative Serving中同时实现自定义指标(如CPU)的自动扩缩容和缩容至零(scale to zero)的功能。
Knative自动扩缩容机制现状
Knative Serving提供了两种主要的自动扩缩容机制:
-
KPA(Knative Pod Autoscaler):这是Knative原生的自动扩缩容器,支持缩容至零功能,但不支持基于CPU等自定义指标的扩缩容。
-
HPA(Horizontal Pod Autoscaler):这是Kubernetes标准的自动扩缩容机制,支持CPU等自定义指标,但不支持缩容至零功能。
这种设计上的分离导致开发者面临一个两难选择:要么选择缩容至零但放弃自定义指标,要么选择自定义指标但放弃缩容至零。
技术解决方案探索
KEDA集成方案
社区中已经出现了一个名为autoscaler-keda的扩展项目,它尝试将KEDA(Kubernetes Event-driven Autoscaling)集成到Knative Serving中。KEDA是一个Kubernetes的自动扩缩容器,它有两个显著特点:
- 支持缩容至零
- 支持丰富的自定义指标
通过这个扩展,Knative Serving可以获得以下能力:
- 保留原有的缩容至零功能
- 新增对CPU等自定义指标的支持
- 扩展支持更多类型的事件驱动指标
实现原理
autoscaler-keda扩展的工作原理是替换Knative Serving中的HPA实现,转而使用KEDA作为底层扩缩容引擎。这种替换是透明的,上层应用仍然使用Knative的标准API和配置方式。
值得注意的是,这个扩展目前处于Alpha阶段,生产环境使用前需要充分测试。它主要替换HPA部分,而KPA部分仍然保持独立运行。
实际应用考量
在实际部署时,开发者需要注意以下几点:
-
避免控制器冲突:不应同时使用KPA和KEDA控制同一个工作负载,这会导致扩缩容策略冲突。
-
指标兼容性:确保自定义指标的定义方式与KEDA兼容,可能需要调整现有的监控体系。
-
性能影响:评估KEDA引入后对系统整体性能的影响,特别是在大规模集群中。
-
功能取舍:虽然KEDA提供了丰富的功能,但可能需要放弃一些Knative原生扩缩容器的特性。
未来展望
随着Serverless技术的演进,Knative Serving的自动扩缩容能力将持续增强。社区正在探索的方向包括:
- 统一扩缩容接口,简化配置
- 增强指标采集和分析能力
- 优化冷启动性能
- 提供更智能的预测性扩缩容
对于需要同时使用自定义指标和缩容至零功能的团队,autoscaler-keda扩展提供了一个可行的过渡方案,值得在测试环境中验证和评估。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00