Knative Serving中实现自定义指标与缩容至零的探索
在云原生应用开发中,Knative Serving作为一款优秀的Serverless框架,其自动扩缩容能力一直是开发者关注的焦点。本文将深入探讨如何在Knative Serving中同时实现自定义指标(如CPU)的自动扩缩容和缩容至零(scale to zero)的功能。
Knative自动扩缩容机制现状
Knative Serving提供了两种主要的自动扩缩容机制:
-
KPA(Knative Pod Autoscaler):这是Knative原生的自动扩缩容器,支持缩容至零功能,但不支持基于CPU等自定义指标的扩缩容。
-
HPA(Horizontal Pod Autoscaler):这是Kubernetes标准的自动扩缩容机制,支持CPU等自定义指标,但不支持缩容至零功能。
这种设计上的分离导致开发者面临一个两难选择:要么选择缩容至零但放弃自定义指标,要么选择自定义指标但放弃缩容至零。
技术解决方案探索
KEDA集成方案
社区中已经出现了一个名为autoscaler-keda的扩展项目,它尝试将KEDA(Kubernetes Event-driven Autoscaling)集成到Knative Serving中。KEDA是一个Kubernetes的自动扩缩容器,它有两个显著特点:
- 支持缩容至零
- 支持丰富的自定义指标
通过这个扩展,Knative Serving可以获得以下能力:
- 保留原有的缩容至零功能
- 新增对CPU等自定义指标的支持
- 扩展支持更多类型的事件驱动指标
实现原理
autoscaler-keda扩展的工作原理是替换Knative Serving中的HPA实现,转而使用KEDA作为底层扩缩容引擎。这种替换是透明的,上层应用仍然使用Knative的标准API和配置方式。
值得注意的是,这个扩展目前处于Alpha阶段,生产环境使用前需要充分测试。它主要替换HPA部分,而KPA部分仍然保持独立运行。
实际应用考量
在实际部署时,开发者需要注意以下几点:
-
避免控制器冲突:不应同时使用KPA和KEDA控制同一个工作负载,这会导致扩缩容策略冲突。
-
指标兼容性:确保自定义指标的定义方式与KEDA兼容,可能需要调整现有的监控体系。
-
性能影响:评估KEDA引入后对系统整体性能的影响,特别是在大规模集群中。
-
功能取舍:虽然KEDA提供了丰富的功能,但可能需要放弃一些Knative原生扩缩容器的特性。
未来展望
随着Serverless技术的演进,Knative Serving的自动扩缩容能力将持续增强。社区正在探索的方向包括:
- 统一扩缩容接口,简化配置
- 增强指标采集和分析能力
- 优化冷启动性能
- 提供更智能的预测性扩缩容
对于需要同时使用自定义指标和缩容至零功能的团队,autoscaler-keda扩展提供了一个可行的过渡方案,值得在测试环境中验证和评估。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00