SimpleAI: 自托管AI API服务项目教程
2025-04-20 01:54:11作者:薛曦旖Francesca
1. 项目介绍
SimpleAI是一个开源项目,旨在提供一个自托管的AI API服务,允许用户轻松地部署自己的模型,并通过标准的API接口进行访问。它兼容开放的AI客户端,可以作为一个替代方案来实验不同的模型,创建性能基准,以及处理那些不能完全依赖外部服务的特定用例。
2. 项目快速启动
要快速启动SimpleAI项目,请按照以下步骤操作:
首先,确保你的系统中已安装Python 3.9或更高版本。然后,你可以通过以下方式安装SimpleAI:
# 从源代码安装
pip install git+https://github.com/lhenault/simpleAI
# 或者从PyPi安装
pip install simple_ai_server
安装完成后,初始化项目配置文件:
simple_ai init
这会创建一个models.toml文件,用于声明你的模型。然后,启动服务:
simple_ai serve [--host 127.0.0.1] [--port 8080]
你可以通过浏览器访问http://127.0.0.1:8080查看文档和尝试API。
3. 应用案例和最佳实践
3.1 集成模型
SimpleAI通过gRPC协议查询模型,以便将API与模型推断分离,并支持多种语言。以下是一个简单的Python模型集成示例:
import logging
from dataclasses import dataclass
from simple_ai.api.grpc.embedding.server import serve, LanguageModelServicer
@dataclass(unsafe_hash=True)
class EmbeddingModel:
def embed(self, inputs: list = []) -> list:
# 实现embed方法
return [[]]
if __name__ == '__main__':
model_servicer = LanguageModelServicer(model=EmbeddingModel())
serve(address='[::]:50051', model_servicer=model_servicer)
3.2 声明模型
在你的models.toml文件中添加新模型,例如:
[llama-7B-4b]
[llama-7B-4b.metadata]
owned_by = 'Meta/ggerganov'
permission = []
description = 'C++实现LlaMA模型,70亿参数,4位量化'
[llama-7B-4b.network]
url = 'localhost:50051'
type = 'gRPC'
3.3 使用API
你可以使用curl或者OpenAI的Python客户端来调用API:
curl -X POST http://127.0.0.1:8080/edits -H 'accept: application/json' -H 'Content-Type: application/json' -d '{
"model": "alpaca-lora-7B",
"instruction": "Make this message nicer and more formal",
"input": "This meeting was useless and should have been a bloody email",
"top_p": 1,
"n": 1,
"temperature": 1,
"max_tokens": 256
}'
或者使用Python客户端:
import openai
openai.api_key = 'Free the models'
openai.api_base = "http://127.0.0.1:8080"
print(openai.Model.list())
completion = openai.Completion.create(model="llama-7B", prompt="Hello everyone this is")
4. 典型生态项目
SimpleAI可以作为各种机器学习和MLOps生态项目的一部分,支持LLM(大型语言模型)等应用。你可以探索将其集成到更广泛的工作流程中,例如数据标注、模型训练、模型评估和部署等。
以上是SimpleAI项目的简要介绍、快速启动指南、应用案例和生态项目的一篇教程。希望对你有所帮助!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355