PyTorch Vision项目中关于torch.load安全警告的技术分析
2025-05-13 08:02:00作者:伍希望
在PyTorch Vision项目的最新测试中,开发团队发现了一个由PyTorch 2.4版本引入的安全警告导致测试失败的问题。这个问题涉及到PyTorch核心的序列化机制,值得深度学习开发者关注。
问题背景
PyTorch 2.4版本对torch.load
函数引入了一个重要的安全警告。当使用默认参数weights_only=False
时,系统会发出警告,提示这种模式下可能执行恶意代码。这个警告被PyTorch Vision测试套件捕获,导致测试失败。
技术细节
问题的核心在于PyTorch Vision测试套件中设置了严格的警告处理策略。测试文件test_transforms_v2.py
中有一行关键代码将所有的警告转换为错误:
pytestmark = [pytest.mark.filterwarnings("error")]
这种设置原本是为了确保代码质量,但在PyTorch 2.4环境下,当测试执行到涉及模型序列化的部分时,torch.load
函数发出的安全警告被当作错误处理,导致测试失败。
安全考量
PyTorch团队引入这个警告是有充分理由的。默认情况下,torch.load
使用Python的pickle模块进行反序列化,而pickle存在执行任意代码的安全风险。PyTorch计划在未来版本中将weights_only
参数的默认值改为True
,这将限制反序列化过程中可执行的函数,提高安全性。
解决方案
PyTorch团队已经意识到这个问题并采取了措施:
- 在PyTorch Vision项目中,通过显式设置
weights_only=False
来避免警告 - 在PyTorch核心代码中进行了相应修改
这些修复预计会包含在PyTorch 2.4.1及后续版本中。
对开发者的建议
对于使用PyTorch Vision的开发者,建议:
- 关注PyTorch版本更新,及时升级到包含修复的版本
- 在关键生产环境中考虑显式设置
weights_only=True
以提高安全性 - 了解pickle的安全风险,谨慎处理来自不可信源的模型文件
总结
这个事件反映了深度学习框架在易用性和安全性之间的平衡问题。PyTorch团队正在逐步改进序列化机制的安全性,而作为开发者,我们需要理解这些变化背后的考量,并适时调整我们的代码实践。随着深度学习应用的普及,这类安全改进将变得越来越重要。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K