MaaFramework手势操作增强:实现长按动作支持
背景与需求分析
在自动化测试和辅助工具领域,MaaFramework作为一个功能强大的框架,其手势操作系统的完善程度直接影响着用户体验和功能覆盖范围。传统的点击、滑动等基础操作已经不能满足日益复杂的交互场景需求,特别是在移动应用和游戏自动化中,长按操作作为一种常见交互方式,其缺失会限制框架的应用场景。
技术实现方案
手势系统扩展
MaaFramework原有的手势系统主要支持以下几种基础操作:
- 单次点击(Tap)
- 连续多次点击(Multi-tap)
- 滑动(Swipe)
- 按压(Press)
为了实现长按动作支持,需要在底层手势引擎中新增长按(Long Press)操作类型。这一功能的实现需要考虑以下几个技术要点:
-
时间阈值判定:需要定义一个合理的时间阈值(通常为500ms-1000ms)来区分普通点击和长按动作。
-
触摸事件序列:
- 按下(Touch Down)
- 持续按压(持续发送Touch Move事件)
- 达到时间阈值后触发长按事件
- 抬起(Touch Up)
-
中断处理:如果在时间阈值内抬起手指,则应退化为普通点击事件。
接口设计
在API层面,新增长按操作需要保持与现有接口风格一致:
/**
* 执行长按操作
* @param x 长按位置的x坐标
* @param y 长按位置的y坐标
* @param duration 长按持续时间(毫秒)
* @return 操作是否成功
*/
bool longPress(int x, int y, int duration);
同时,为了保持向后兼容性,可以考虑在现有的touchDown和touchUp接口中增加持续时间参数,实现更灵活的控制。
实现细节
平台适配层
不同操作系统和设备的触摸事件处理机制存在差异,需要在各平台的适配层中实现统一的长按行为:
-
Android平台:利用InputManagerService发送MotionEvent序列,模拟真实的长按行为。
-
iOS平台:通过XCTest框架的XCUIScreen提供的长按API实现。
-
Windows平台:使用SendInput函数序列模拟鼠标按下、保持和释放。
性能考量
长按操作的实现需要注意以下性能优化点:
-
事件发送频率:在长按持续期间,需要以合理的频率发送Touch Move事件,通常为每秒60次,以模拟真实用户操作。
-
资源占用:长时间保持按压状态可能占用系统资源,需要实现合理的资源释放机制。
-
超时处理:设置最大长按时间限制,防止异常情况下的资源浪费。
测试验证
为确保长按功能的可靠性和一致性,需要设计全面的测试用例:
-
基础功能测试:
- 短时间按压验证是否不触发长按
- 达到阈值时间的按压验证是否触发长按
- 超长时间按压验证系统稳定性
-
边界条件测试:
- 屏幕边缘长按
- 多指长按
- 快速连续长按
-
兼容性测试:
- 不同Android版本
- 不同屏幕密度设备
- 特殊输入法环境
应用场景
长按操作的加入极大地扩展了MaaFramework的应用场景:
-
游戏自动化:许多手机游戏使用长按触发特殊技能或连续攻击。
-
应用测试:测试应用中的上下文菜单、拖拽排序等依赖长按的功能。
-
辅助功能:为残障人士提供更丰富的操作方式选择。
总结与展望
MaaFramework通过引入长按动作支持,进一步完善了其手势操作系统,使其能够覆盖更广泛的自动化场景。这一功能的实现不仅考虑了技术可行性,还充分重视了跨平台一致性和用户体验。未来可以在此基础上进一步扩展手势识别能力,如双指缩放、自定义手势等,使框架在自动化测试和辅助工具领域更具竞争力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00