MGM项目中的Token数量限制问题解析
2025-06-25 14:28:07作者:邵娇湘
在MGM项目的模型训练过程中,关于视觉特征与文本特征拼接后的Token数量限制问题引发了技术讨论。本文将深入分析这一技术细节,帮助开发者理解其中的关键点。
问题背景
MGM项目基于LLaMA-2-7B模型进行开发,该模型默认的最大Token长度(max token length)为2048。在stage2训练阶段,当设置IMAGE_GRID=2和IMAGE_GLOBAL=True时,代码会将全局图像特征与局部图像特征进行拼接:
image_features = torch.cat([image_feat_global, image_features], dim=1)
image_aux_features = torch.cat([image_aux_feat_global, image_aux_features], dim=1)
这种拼接操作会导致最终的图像特征Token数量增加到2880,这明显超过了LLaMA-2模型默认的2048 Token限制。
技术解决方案
项目团队通过两种方式解决了这个问题:
-
输入截断机制:代码中实现了自动截断功能,当Token总数超过限制时,会保留前面的Token而截断后面的部分。这种处理方式虽然简单直接,但可能会丢失部分视觉信息。
-
扩展模型上下文长度:在stage2训练配置中,将模型的tokenizer_model_max_length参数调整为4096。这种做法利用了Vicuna-1.5模型支持4K上下文长度的特性,为视觉特征提供了足够的空间。
深入技术分析
-
模型上下文长度与Token限制的区别:
- 上下文长度(context length)是指模型能够处理的序列总长度,包括输入和输出
- Token限制通常指输入Token的最大数量
- LLaMA-2的4K上下文长度是为整个对话流程设计的,而不仅针对输入
-
视觉特征Token的构成:
- 全局特征(global features)提供图像的整体理解
- 局部特征(local features)捕捉图像的细节信息
- 两者拼接可以同时获得全局和局部视觉理解
-
训练策略考量:
- stage1可能使用较小的Token限制进行初步训练
- stage2扩展限制以容纳更丰富的视觉特征
- 这种渐进式训练策略有助于模型稳定学习
最佳实践建议
- 在类似的多模态模型开发中,需要仔细计算各模态特征的Token占用情况
- 当特征维度较大时,可以考虑:
- 特征压缩技术
- 分层特征提取
- 动态Token分配机制
- 扩展模型上下文长度时,需注意其对计算资源和训练稳定性的影响
通过这种深入的技术解析,开发者可以更好地理解MGM项目中处理Token限制的解决方案,并在自己的多模态模型开发中做出更合理的设计决策。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0132
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
273
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692