LangChainGo项目中获取检索增强生成(RAG)的源文档信息
2025-06-02 12:55:29作者:谭伦延
在LangChainGo项目中实现检索增强生成(Retrieval-Augmented Generation, RAG)时,开发者经常需要了解语言模型生成答案时所参考的具体文档来源。本文将详细介绍如何在LangChainGo中获取这些源文档信息。
检索增强生成的基本流程
检索增强生成通常包含以下几个步骤:
- 将用户查询转换为向量表示
- 在向量数据库中搜索相似文档
- 将检索到的文档与原始查询一起提供给语言模型
- 语言模型基于这些信息生成最终答案
获取源文档的关键配置
在LangChainGo中,通过chains.NewRetrievalQAFromLLM创建的检索问答链默认只返回语言模型生成的答案文本。要获取模型参考的源文档,需要在创建链时进行额外配置:
qaChain := chains.NewRetrievalQAFromLLM(
llm,
vectorstores.ToRetriever(vectorStore, 5),
chains.WithReturnSourceDocuments(true), // 关键配置
)
完整实现示例
下面是一个完整的实现示例,展示了如何配置并获取源文档:
// 初始化连接和组件
conn, err := pgx.Connect(ctx, dsn)
if err != nil {
return nil, err
}
llm, err := openai.New(
openai.WithEmbeddingModel("text-embedding-3-small"),
)
if err != nil {
return nil, err
}
e, err := embeddings.NewEmbedder(llm)
if err != nil {
return nil, err
}
// 创建向量存储
vectorStore, err := pgvector.New(
ctx,
pgvector.WithConn(conn),
pgvector.WithEmbedder(e),
pgvector.WithCollectionName("my_collection"),
)
// 创建问答链并配置返回源文档
qaChain := chains.NewRetrievalQAFromLLM(
llm,
vectorstores.ToRetriever(vectorStore, 5),
chains.WithReturnSourceDocuments(true),
)
// 执行查询
result, err := chains.Run(
ctx,
qaChain,
query,
chains.WithTemperature(0.1),
)
if err != nil {
return nil, err
}
// 获取结果和源文档
answer := result.Result
sourceDocs := result.SourceDocuments // 这里包含了参考的文档
源文档信息的应用场景
获取源文档信息在实际应用中有多种用途:
- 结果验证:用户可以检查模型回答的依据是否可靠
- 可解释性:增强AI系统的透明度,让用户理解答案来源
- 调试优化:开发者可以分析哪些文档被频繁使用,优化检索策略
- 引用展示:在界面上显示答案参考的具体文档来源
性能考量
虽然获取源文档会增加少量内存开销,但对于大多数应用场景来说,这种开销是可以接受的。开发者可以根据实际需求决定是否启用此功能。
通过合理配置LangChainGo的检索问答链,开发者可以轻松获取模型参考的源文档信息,从而构建更加透明和可信的AI应用系统。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.28 K
暂无简介
Dart
621
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
791
77