LangChainGo项目中获取检索增强生成(RAG)的源文档信息
2025-06-02 11:49:01作者:谭伦延
在LangChainGo项目中实现检索增强生成(Retrieval-Augmented Generation, RAG)时,开发者经常需要了解语言模型生成答案时所参考的具体文档来源。本文将详细介绍如何在LangChainGo中获取这些源文档信息。
检索增强生成的基本流程
检索增强生成通常包含以下几个步骤:
- 将用户查询转换为向量表示
- 在向量数据库中搜索相似文档
- 将检索到的文档与原始查询一起提供给语言模型
- 语言模型基于这些信息生成最终答案
获取源文档的关键配置
在LangChainGo中,通过chains.NewRetrievalQAFromLLM创建的检索问答链默认只返回语言模型生成的答案文本。要获取模型参考的源文档,需要在创建链时进行额外配置:
qaChain := chains.NewRetrievalQAFromLLM(
llm,
vectorstores.ToRetriever(vectorStore, 5),
chains.WithReturnSourceDocuments(true), // 关键配置
)
完整实现示例
下面是一个完整的实现示例,展示了如何配置并获取源文档:
// 初始化连接和组件
conn, err := pgx.Connect(ctx, dsn)
if err != nil {
return nil, err
}
llm, err := openai.New(
openai.WithEmbeddingModel("text-embedding-3-small"),
)
if err != nil {
return nil, err
}
e, err := embeddings.NewEmbedder(llm)
if err != nil {
return nil, err
}
// 创建向量存储
vectorStore, err := pgvector.New(
ctx,
pgvector.WithConn(conn),
pgvector.WithEmbedder(e),
pgvector.WithCollectionName("my_collection"),
)
// 创建问答链并配置返回源文档
qaChain := chains.NewRetrievalQAFromLLM(
llm,
vectorstores.ToRetriever(vectorStore, 5),
chains.WithReturnSourceDocuments(true),
)
// 执行查询
result, err := chains.Run(
ctx,
qaChain,
query,
chains.WithTemperature(0.1),
)
if err != nil {
return nil, err
}
// 获取结果和源文档
answer := result.Result
sourceDocs := result.SourceDocuments // 这里包含了参考的文档
源文档信息的应用场景
获取源文档信息在实际应用中有多种用途:
- 结果验证:用户可以检查模型回答的依据是否可靠
- 可解释性:增强AI系统的透明度,让用户理解答案来源
- 调试优化:开发者可以分析哪些文档被频繁使用,优化检索策略
- 引用展示:在界面上显示答案参考的具体文档来源
性能考量
虽然获取源文档会增加少量内存开销,但对于大多数应用场景来说,这种开销是可以接受的。开发者可以根据实际需求决定是否启用此功能。
通过合理配置LangChainGo的检索问答链,开发者可以轻松获取模型参考的源文档信息,从而构建更加透明和可信的AI应用系统。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
282
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
272
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871