LangChainGo项目中获取检索增强生成(RAG)的源文档信息
2025-06-02 11:49:01作者:谭伦延
在LangChainGo项目中实现检索增强生成(Retrieval-Augmented Generation, RAG)时,开发者经常需要了解语言模型生成答案时所参考的具体文档来源。本文将详细介绍如何在LangChainGo中获取这些源文档信息。
检索增强生成的基本流程
检索增强生成通常包含以下几个步骤:
- 将用户查询转换为向量表示
- 在向量数据库中搜索相似文档
- 将检索到的文档与原始查询一起提供给语言模型
- 语言模型基于这些信息生成最终答案
获取源文档的关键配置
在LangChainGo中,通过chains.NewRetrievalQAFromLLM创建的检索问答链默认只返回语言模型生成的答案文本。要获取模型参考的源文档,需要在创建链时进行额外配置:
qaChain := chains.NewRetrievalQAFromLLM(
llm,
vectorstores.ToRetriever(vectorStore, 5),
chains.WithReturnSourceDocuments(true), // 关键配置
)
完整实现示例
下面是一个完整的实现示例,展示了如何配置并获取源文档:
// 初始化连接和组件
conn, err := pgx.Connect(ctx, dsn)
if err != nil {
return nil, err
}
llm, err := openai.New(
openai.WithEmbeddingModel("text-embedding-3-small"),
)
if err != nil {
return nil, err
}
e, err := embeddings.NewEmbedder(llm)
if err != nil {
return nil, err
}
// 创建向量存储
vectorStore, err := pgvector.New(
ctx,
pgvector.WithConn(conn),
pgvector.WithEmbedder(e),
pgvector.WithCollectionName("my_collection"),
)
// 创建问答链并配置返回源文档
qaChain := chains.NewRetrievalQAFromLLM(
llm,
vectorstores.ToRetriever(vectorStore, 5),
chains.WithReturnSourceDocuments(true),
)
// 执行查询
result, err := chains.Run(
ctx,
qaChain,
query,
chains.WithTemperature(0.1),
)
if err != nil {
return nil, err
}
// 获取结果和源文档
answer := result.Result
sourceDocs := result.SourceDocuments // 这里包含了参考的文档
源文档信息的应用场景
获取源文档信息在实际应用中有多种用途:
- 结果验证:用户可以检查模型回答的依据是否可靠
- 可解释性:增强AI系统的透明度,让用户理解答案来源
- 调试优化:开发者可以分析哪些文档被频繁使用,优化检索策略
- 引用展示:在界面上显示答案参考的具体文档来源
性能考量
虽然获取源文档会增加少量内存开销,但对于大多数应用场景来说,这种开销是可以接受的。开发者可以根据实际需求决定是否启用此功能。
通过合理配置LangChainGo的检索问答链,开发者可以轻松获取模型参考的源文档信息,从而构建更加透明和可信的AI应用系统。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219