MiniGrid环境向量化与Wrapper应用实践
2025-07-03 09:25:49作者:郁楠烈Hubert
概述
在使用强化学习框架时,环境向量化(Environment Vectorization)是一个提高训练效率的重要技术。本文将详细介绍如何在MiniGrid环境中正确使用向量化功能以及如何结合Wrapper进行环境修改。
环境向量化的基本用法
MiniGrid作为Gymnasium的一个环境套件,支持通过gym.make_vec()方法创建向量化环境。基本用法如下:
import gymnasium as gym
import minigrid
envs = gym.make_vec("MiniGrid-DistShift1-v0", num_envs=3)
这种方法会创建一个包含3个并行环境的向量化环境,可以显著提高数据收集效率。
Wrapper的应用问题
MiniGrid提供了多种Wrapper来修改环境行为,例如StochasticActionWrapper可以为动作添加随机性。在单个环境中应用Wrapper是直接的:
from minigrid.wrappers import StochasticActionWrapper
env = gym.make("MiniGrid-Empty-5x5-v0")
env = StochasticActionWrapper(env)
然而,如果直接在向量化环境上应用Wrapper会导致错误,因为向量化环境不是标准的Env实例。
正确的Wrapper应用方式
方法一:先Wrapper后向量化
最可靠的方式是在创建向量化环境前对每个子环境应用Wrapper:
from gymnasium.vector import SyncVectorEnv
def make_env():
env = gym.make("MiniGrid-Empty-5x5-v0")
env = StochasticActionWrapper(env)
return env
envs = SyncVectorEnv([make_env for _ in range(3)])
方法二:使用make_vec的wrappers参数
Gymnasium的make_vec函数提供了wrappers参数,可以更简洁地实现相同效果:
envs = gym.make_vec("MiniGrid-Empty-5x5-v0",
num_envs=3,
wrappers=(StochasticActionWrapper,))
技术原理分析
向量化环境本质上是一个管理多个子环境的容器。Wrapper设计时通常假设操作的是单个环境实例。当直接在向量化环境上应用Wrapper时,类型检查会失败,因为向量化环境不是Env类的直接实例。
正确的做法应该是对每个子环境单独应用Wrapper,这正是上述两种方法背后的原理。第一种方法更灵活,可以在创建函数中添加更多自定义逻辑;第二种方法更简洁,适合简单场景。
最佳实践建议
- 对于简单的Wrapper应用,优先使用
make_vec的wrappers参数 - 需要复杂初始化逻辑时,使用
SyncVectorEnv配合工厂函数 - 避免直接对向量化环境应用Wrapper
- 自定义Wrapper时,考虑同时支持单个环境和向量化环境的情况
通过正确使用这些技术,可以充分发挥MiniGrid环境向量化的性能优势,同时保持Wrapper提供的环境修改功能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217