ThingsBoard中实现跨Widget共享认证令牌的最佳实践
2025-05-12 00:06:43作者:廉皓灿Ida
在ThingsBoard平台开发自定义仪表板时,我们经常需要创建多个自定义Widget来展示不同的数据视图。当这些Widget都需要访问后端API获取数据时,如何高效地管理认证令牌(token)就成为一个值得关注的问题。
认证令牌的基本原理
ThingsBoard采用基于JWT(JSON Web Token)的认证机制。当用户成功登录后,系统会生成一个加密的访问令牌,这个令牌会被存储在浏览器的localStorage中,键名为"jwt_token"。默认情况下,这个令牌有一定的有效期(通常为24小时),过期后需要重新获取。
常见问题分析
许多开发者会遇到这样的场景:在多个自定义Widget中都需要调用后端API获取数据,于是每个Widget都独立实现了一套获取令牌的逻辑。这种做法会导致:
- 重复的令牌获取请求
- 不必要的性能开销
- 潜在的令牌不一致风险
- 代码冗余和维护困难
最佳实践解决方案
方案一:直接使用ThingsBoard内置服务
ThingsBoard已经为Widget提供了完善的数据访问服务,开发者无需手动处理令牌问题。例如:
// 获取设备的时间序列数据
self.ctx.attributeService.getEntityTimeseries(
entityType,
entityId,
keys,
startTs,
endTs,
limit,
agg,
orderBy,
useStrictDataTypes
);
这些内置服务会自动处理认证问题,包括令牌的获取、刷新等全部流程。
方案二:使用HTTP服务代理
如果需要调用自定义API端点,可以使用ThingsBoard提供的HTTP服务代理:
// GET请求示例
self.ctx.http.get('/api/custom/endpoint');
// POST请求示例
self.ctx.http.post('/api/custom/endpoint', payload);
// DELETE请求示例
self.ctx.http.delete('/api/custom/endpoint');
注意API路径必须以"/api"开头,这样HTTP服务会自动附加当前用户的认证令牌。
方案三:直接访问localStorage(不推荐)
虽然技术上可行,但不建议直接操作localStorage:
const token = localStorage.getItem('jwt_token');
这种方法绕过了ThingsBoard的安全机制,可能导致令牌管理不一致,且无法享受自动刷新的便利。
性能优化建议
- 减少API调用:合理设计Widget,合并数据请求
- 使用缓存:对不常变化的数据实施本地缓存
- 批量查询:尽可能使用批量查询接口减少请求次数
- 合理设置轮询间隔:避免过于频繁的数据刷新
总结
在ThingsBoard开发中,最佳实践是充分利用平台提供的内置服务,而不是自行处理认证令牌。这不仅能保证安全性,还能简化代码、提高性能。对于特殊需求,可以使用HTTP服务代理,它同样会自动处理认证问题。直接操作令牌应该是最后的选择,且需要谨慎处理。
通过遵循这些实践,开发者可以创建出高效、安全且易于维护的ThingsBoard仪表板应用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212