Quickly-Mask项目中的人脸五官分析与贴纸定位技术解析
2025-06-07 11:36:22作者:滑思眉Philip
前言
在图像处理和人脸特效应用中,如何精准地为人脸添加装饰元素(如圣诞帽、口罩等)是一个关键技术难点。本文将深入解析Quickly-Mask项目中实现人脸贴纸定位的核心技术方案。
技术方案概述
Quickly-Mask项目主要采用了两种技术路线:
- 腾讯云五官分析服务:作为主要实现方案,通过云端API获取精准的人脸关键点数据
- face-api纯前端方案:作为备选方案,完全在浏览器端完成人脸识别
核心实现原理
1. 单位转换基础
项目中采用rpx作为基本单位,实现了完美的等比缩放:
- 设计稿尺寸:600px
- 小程序实现:600rpx
- 转换关系:750rpx = 375px(iPhone6标准)
这种设计确保了在不同设备上都能保持一致的显示效果。
2. 腾讯云五官分析服务
接口调用
通过小程序服务市场调用腾讯云的五官分析API:
const res = await wx.serviceMarket.invokeService({
service: 'wx2d1fd8562c42cebb',
api: 'analyzeFace',
data: {
Action: 'AnalyzeFace',
Image: base64Main
}
})
关键点数据结构
接口返回包含90个人脸关键点,分布如下:
| 部位 | 点数 | 描述 |
|---|---|---|
| 脸型轮廓 | 21 | 定义面部外轮廓 |
| 左眼 | 8 | 左眼轮廓 |
| 右眼 | 8 | 右眼轮廓 |
| 左眉 | 8 | 左眉轮廓 |
| 右眉 | 8 | 右眉轮廓 |
| 嘴巴 | 22 | 嘴唇轮廓 |
| 鼻子 | 13 | 鼻部轮廓 |
| 左瞳孔 | 1 | 左眼瞳孔中心 |
| 右瞳孔 | 1 | 右眼瞳孔中心 |
3. 贴纸定位算法
圣诞帽/皇冠定位
关键计算步骤:
- 脸部宽度计算:通过脸型轮廓点计算
- 旋转角度计算:确定人脸倾斜角度
- 头顶中心点定位:确定帽子放置位置
核心公式:
// 计算缩放比例
let widthScaleDpr = Math.sin(Math.PI/4 - angle) * Math.sqrt(2) * faceWidth
let heightScaleDpr = Math.cos(Math.PI/4 - angle) * Math.sqrt(2) * faceWidth
// 最终位置计算
const shapeWidth = faceWidth / 0.6
const transX = shapeCenterX - shapeWidth/2 - 2 + 'rpx'
const transY = shapeCenterY - shapeWidth/2 - 2 + 'rpx'
口罩定位
与帽子定位类似,但基准点改为嘴巴中心位置:
- 获取嘴巴左右端点
- 计算嘴巴中点
- 基于中点确定口罩位置
4. 纯前端方案(face-api)
虽然项目中主要使用云端方案,但也探索了纯前端的实现方式:
技术挑战:
- 模型体积大(5M+)
- 小程序环境兼容性问题
- Node.js服务端实现性能瓶颈
潜在优化方向:
- 模型量化压缩
- WebAssembly加速
- 服务端GPU加速
实现细节与优化
视图层实现
在View层实现贴纸定位时,采用CSS transform进行精确定位:
let shapeStyle = {
width: shapeWidth + 'rpx',
height: shapeWidth + 'rpx',
transform: `translate(${transX}, ${transY}) rotate(${rotate + 'deg'})`,
zIndex: shapeIndex === currentShapeIndex ? 2 : 1
}
性能考量
- 避免频繁重绘:通过直接计算shapeWidth而非使用scale变换
- 视觉一致性:通过实验确定最佳偏移量(-2rpx)保证视觉效果
- 响应式设计:基于rpx的单位系统确保多设备适配
总结
Quickly-Mask项目通过结合云端AI服务和精妙的定位算法,实现了高质量的人脸贴纸效果。关键技术点包括:
- 精准的人脸关键点检测
- 基于几何计算的贴纸定位算法
- 跨设备的响应式实现方案
- 性能与视觉效果的平衡
这套技术方案不仅适用于圣诞帽、口罩等装饰,也可扩展应用于各类人脸AR特效,具有很好的通用性和实用性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
663
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259