Locust负载测试工具中用户类权重分配问题的分析与解决
2025-05-07 09:33:37作者:仰钰奇
在性能测试工具Locust的使用过程中,我发现了一个关于用户类权重分配的潜在问题。当设置不同权重的用户类时,实际生成的虚拟用户数量与预期存在偏差,这可能会影响测试结果的准确性。
问题现象
在Locust测试脚本中定义了两个用户类TestUser1和TestUser2,分别设置权重为20和25。按照预期,当总虚拟用户数为45时,TestUser1应分配20个用户,TestUser2应分配25个用户。然而实际运行结果显示,TestUser1分配了23个用户,TestUser2分配了22个用户,这与预期不符。
深入分析
通过一系列测试用例,我发现这个问题具有特定规律性:
- 当权重比为4:5时,分配结果总是出现偏差
- 其他权重比例如2:5或2:3时,分配结果正确
- 问题在多次测试中稳定复现,非随机性偏差
进一步分析Locust源码发现,问题根源在于权重归一化算法中使用了"银行家舍入法"(round half to even)。这种舍入方式在处理某些特定比例时会导致归一化后的权重值相同,从而影响最终的用户分配。
技术原理
Locust原有的权重分配算法采用以下步骤:
- 找到所有用户类权重中的最小值
- 使用目标最小权重值(默认为2)进行归一化计算
- 应用银行家舍入法对结果进行取整
在4:5的权重比例下,归一化计算过程为:
- 对于权重4:round(2*4/4)=2
- 对于权重5:round(2*5/4)=2.5→2(银行家舍入)
这导致两个用户类的归一化权重相同,从而影响了最终的用户分配比例。
解决方案
我提出了基于最大公约数(GCD)的改进算法:
- 计算所有用户类权重的最大公约数
- 使用GCD进行归一化,确保比例精确
- 避免使用可能引入偏差的舍入方法
这种方法能够更精确地保持原始权重比例,特别是在处理4:5这类特定比例时,能够正确分配20:25的用户数量。
实际影响
这个问题的存在可能导致:
- 测试场景与设计不符,影响测试结果的可信度
- 不同类型用户的实际负载比例偏离预期
- 在需要精确控制用户比例的测试场景中产生误导
最佳实践建议
在使用Locust进行负载测试时,建议:
- 验证用户类的实际分配数量是否符合预期
- 对于关键比例场景,进行小规模验证测试
- 关注Locust的版本更新,确保使用修复后的版本
这个问题已在最新版本的Locust中得到修复,用户可以通过升级到最新版本来避免此类问题。对于性能测试工程师而言,理解工具的内部工作机制有助于更准确地设计测试场景和解读测试结果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493