探索视频识别的未来:I3D模型在Kinetics上的训练
概览
这款开源项目是Joao Carreira 和 Andrew Zisserman在2017年CVPR会议上发表的论文《Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset》的实践应用。它包含了使用Inception-v1架构的I3D模型,这些模型经过Kinetics数据集的训练。
在论文中,作者展示了如何通过微调这些预训练模型在UCF101和HMDB51这两个标准视频分类数据集上达到最先进的性能。此外,基于I3D的预训练模型还在2017年的Charades挑战赛中拔得头筹。
现在,该项目还包括了一个从零开始训练的rgb输入模型,以及更大的Kinetics-600数据集。
最新更新:Google已开放了他们用于视频预处理的代码,详细信息可在Google的MediaPipe仓库找到相关设置指南。
请注意:这不是一个官方的Google产品。
开始使用
安装与配置
首先,按照Sonnet库的安装说明进行操作。
然后克隆这个项目仓库:
$ git clone https://github.com/deepmind/kinetics-i3d
示例代码运行
使用以下命令运行示例代码:
$ python evaluate_sample.py
默认情况下,该脚本会构建I3D双流模型,加载预训练的I3D检查点,并将一个样例视频通过模型进行处理。样例视频已经过预处理,提供了RGB和Flow的NumPy数组。
脚本将输出logits张量的范数,以及模型预测的前20个Kinetics类及其概率和logit值。如果使用默认参数,输出应该类似于以下内容(数字精度可能会有所不同):
Norm of logits: 138.468643
Top classes and probabilities
...
运行测试
你可以使用以下命令运行测试:
$ python i3d_test.py
这将检查模型是否能正确构建并产生正确的形状。
更多细节
提供的检查点
默认模型是在ImageNet和Kinetics上预训练的;其他标志允许加载仅在Kinetics上预训练的模型,以及选择RGB或Flow流。multi_evaluate.sh脚本演示了如何运行所有这些组合,并将样本输出保存到out/目录。
在data/checkpoints目录中,包含了四个训练好的检查点。那些仅在Kinetics上训练的模型使用默认的Sonnet/TensorFlow初始化器,而那些在ImageNet上预训练的模型则是通过从2D Inception-v1模型中引导过滤器到3D来初始化的,如论文中所述。重要的是,RGB和Flow流分别进行训练,每个都有softmax分类损失。在测试时,我们通过添加等权重的logits来结合两个流,这在evaluate_sample.py代码中所示。
训练过程
我们使用同步SGD和tf.train.SyncReplicasOptimizer进行训练。对于RGB和Flow流,我们在64个副本上聚合,包括4个备份副本。训练期间,我们使用0.5的dropout并应用BatchNorm,批大小为6。使用的优化器是动量为0.9的SGD,使用1e-7的权重衰减。RGB和Flow模型分别训练115k和155k步,学习率调度如下:
RGB:
- 0 - 97k: 1e-1
- 97k - 108k: 1e-2
- 108k - 115k: 1e-3
Flow:
- 0 - 97k: 1e-1
- 97k - 104.5k: 1e-2
- 104.5k - 115k: 1e-3
- 115k - 140k: 1e-1
- 140k - 150k: 1e-2
- 150k - 155k: 1e-3
因为Flow模型被确定需要更多的训练,在115k步之后又进行了进一步的训练。
样本数据和预处理
在DeepMind Kinetics数据集的发布版中,只包括了YouTube ID和片段的起止时间。在这个样本数据中,我们使用来自UCF101数据集的一个视频,该数据集提供了所有完整的视频。使用的视频是v_CricketShot_g04_c01.mp4,可以从UCF101网站下载。
我们的预处理使用内部库进行,现在已经开源在Google的MediaPipe仓库。具体来说,对于两个流,我们以25帧每秒的速度采样帧。对于Kinetics,我们还会在开始和结束时间剪辑视频。
对于RGB,我们按比例缩放视频,使最短边为256像素,使用双线性插值。像素值随后被重新缩放到-1和1之间。在训练过程中,我们随机选择一个224x224的图像裁剪,而在测试时,我们从视频中选择中心的224x224图像裁剪。因此,提供的.npy文件对于RGB具有形状(1, num_frames, 224, 224, 3),对应于批次大小为1。
对于Flow流,我们在25帧每秒下采样视频后将其转换为灰度。我们应用类似OpenCV中的这种代码的TV-L1光流算法。像素值被截断在[-20, 20]范围内,然后重缩放到-1和1之间。我们只使用前两个输出维度,并应用与RGB相同的裁剪。因此,提供的.npy文件对于Flow具有形状(1, num_frames, 224, 224, 2),也对应于批次大小为1。
致谢
感谢Brian Zhang, Joao Carreira, Viorica Patraucean, Diego de Las Casas, Chloe Hillier和Andrew Zisserman对初版发布的帮助。同样也要感谢Kinetics数据集的团队和原始Inception论文的作者,我们的架构和代码都是基于他们的工作。
问题和贡献
要向此存储库作出贡献,你需要首先签署Google的贡献者许可协议(CLA),在CONTRIBUTING.md文件中提供。然后我们将能够接受任何拉取请求,尽管目前并不打算扩展到其他训练模型。
如有任何问题,可以联系“Quo Vadis”论文的作者,他们的电子邮件在论文中列出。
让我们一起探索视频识别的新边界,这个强大的工具正等待你的发现!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00