Druid 1.2.22版本与dynamic-datasource兼容性问题分析
问题背景
在Druid数据库连接池1.2.22版本中,对DruidDataSourceAutoConfigure类进行了修改,导致与dynamic-datasource组件出现了兼容性问题。这个问题影响了使用这两个组件组合的Spring Boot应用。
技术细节分析
在1.2.22版本之前,DruidDataSourceAutoConfigure类中定义的DataSource Bean返回类型是通用的DataSource接口:
@Bean
@ConditionalOnMissingBean
public DataSource dataSource() {
return new DruidDataSourceWrapper();
}
这种设计允许其他数据源组件(如dynamic-datasource)通过定义相同名称的Bean来覆盖Druid的默认实现。Spring的依赖注入机制会优先使用后定义的Bean。
然而,在1.2.22版本中,Druid团队将返回类型修改为了具体的DruidDataSourceWrapper类:
@Bean
@ConditionalOnMissingBean
public DruidDataSourceWrapper dataSource() {
return new DruidDataSourceWrapper();
}
这一改动原本是为了更好地支持Graal VM原生镜像,但却带来了与dynamic-datasource的兼容性问题。由于dynamic-datasource定义的Bean类型是DataSource而非DruidDataSourceWrapper,它无法覆盖Druid的Bean定义,导致应用启动失败。
问题表现
当应用同时使用这两个组件时,会出现以下错误:
Description:
The bean 'dataSource', defined in class path resource [com/alibaba/druid/spring/boot3/autoconfigure/DruidDataSourceAutoConfigure.class], could not be registered.
A bean with that name has already been defined in class path resource [com/baomidou/dynamic/datasource/spring/boot/autoconfigure/DynamicDataSourceAutoConfiguration.class] and overriding is disabled.
即使开启了Bean覆盖(spring.main.allow-bean-definition-overriding=true),由于类型不匹配,dynamic-datasource的Bean也无法正确覆盖Druid的Bean定义。
解决方案
Druid团队已经意识到这个问题,并在后续版本中进行了修复。修复方案是在@ConditionalOnMissingBean注解中增加多种类型的检查:
@ConditionalOnMissingBean({DruidDataSourceWrapper.class,
DruidDataSource.class,
DataSource.class})
这种改进确保了:
- 当应用中已经存在DruidDataSourceWrapper、DruidDataSource或DataSource类型的Bean时,Druid的自动配置不会生效
- 兼容了dynamic-datasource等第三方数据源组件
- 仍然保持了Graal VM原生镜像的支持
临时解决方案
对于无法立即升级到修复版本的用户,可以考虑以下临时解决方案:
- 在应用配置中显式设置spring.main.allow-bean-definition-overriding=true
- 手动排除Druid的自动配置类
- 回退到Druid 1.2.21版本
总结
这个案例展示了在框架升级时需要考虑的兼容性问题,特别是当多个流行框架需要协同工作时。Druid团队通过改进@ConditionalOnMissingBean的条件检查,既解决了兼容性问题,又保持了框架的原有功能。对于开发者而言,理解Spring Boot的自动配置机制和Bean覆盖规则,有助于更好地诊断和解决类似问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00