Revm v59版本发布:EVM实现的重要升级与架构优化
项目简介
Revm是一个用Rust语言实现的高性能区块链虚拟机(EVM),它提供了完整的EVM功能实现,支持主流区块链网络和各种测试网络的协议规则。作为一个模块化的EVM实现,Revm被广泛应用于区块链客户端开发、智能合约测试和各类区块链工具链中。
核心变更概述
本次发布的v59版本包含了多项重要改进,主要集中在性能优化、代码重构和功能增强三个方面。从架构调整到具体实现细节,都体现了开发团队对代码质量和运行效率的不懈追求。
架构与API改进
-
模块导出优化:重新组织了crate的导出结构,现在所有子crate都可以直接从主revm crate中访问,简化了依赖管理。
-
预编译合约重构:将预编译合约相关的常量从各个模块中分离出来,集中管理,提高了代码的可维护性。特别修正了G1_msm基础gas费用的常量值,确保计算准确性。
-
数据库接口增强:
- 新增了
TryDatabaseCommit特性,为数据库提交操作提供了更灵活的错误处理机制 - 将
CacheDB的字段分离到独立的Cache结构中,使缓存管理更加清晰 - 增加了
with_ref_db函数,方便创建带有引用数据库的实例
- 新增了
-
交易处理改进:
- 为
TxEnv添加了derive_tx_type函数,简化交易类型推导 - 修复了EIP-7702前不需要加载代码的问题
- 允许测试文件中重复出现v和yparity字段,提高测试灵活性
- 为
性能优化
-
BN128预编译优化:简化了配对运算(pairing)的实现,减少了不必要的计算步骤。
-
Gas处理改进:为
LoopControl添加了不可变gas API,避免不必要的复制操作。 -
跳转表检查:放宽了跳转表长度检查的条件,提高了执行效率。
新功能与扩展性
-
新增硬分叉支持:
- 添加了Interop硬分叉支持
- 为Optimism添加了Osaka分叉,以激活EOF功能
-
独立Host实现:移除了Context中的默认实现,允许开发者更灵活地自定义Host环境。
-
日志条目泛型化:使日志条目支持泛型类型,提高了框架的扩展性。
-
Optimism专用改进:
- 修复了存款交易处理和错误捕获机制
- 优化了L1区块数据加载逻辑
- 将
revm-optimismcrate重命名为更具识别度的op-revm
开发者体验提升
-
错误处理改进:统一了预编译错误类型命名,从
PrecompileErrors改为更符合惯例的PrecompileError。 -
文档增强:
- 为Bytecode crate添加了详细文档
- 修正了多处注释错误和文档链接
- 移除了过时的TODO标记
-
示例代码更新:示例现在直接使用主revm crate而非子模块,降低了入门门槛。
-
调试支持:为
Evm和EvmData类型实现了Debug特性,方便开发调试。
代码质量与维护
-
依赖管理:将所有依赖项移动到workspace级别统一管理。
-
无用代码清理:
- 移除了未使用的
optional_gas_refund功能 - 删除了未使用的源文件
- 清理了多余的实现和错误类型
- 移除了未使用的
-
类型导出优化:统一了EIP-2930和EIP-7702相关类型的导出位置。
总结
Revm v59版本在保持高性能的同时,通过架构优化和功能增强,进一步巩固了其作为Rust生态中最成熟EVM实现的地位。特别是对Optimism的深度支持和数据库接口的改进,使其能够更好地满足各类区块链开发需求。这些变更不仅提升了框架的稳定性和性能,也为开发者提供了更友好、更灵活的API接口。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00