Revm v59版本发布:EVM实现的重要升级与架构优化
项目简介
Revm是一个用Rust语言实现的高性能区块链虚拟机(EVM),它提供了完整的EVM功能实现,支持主流区块链网络和各种测试网络的协议规则。作为一个模块化的EVM实现,Revm被广泛应用于区块链客户端开发、智能合约测试和各类区块链工具链中。
核心变更概述
本次发布的v59版本包含了多项重要改进,主要集中在性能优化、代码重构和功能增强三个方面。从架构调整到具体实现细节,都体现了开发团队对代码质量和运行效率的不懈追求。
架构与API改进
-
模块导出优化:重新组织了crate的导出结构,现在所有子crate都可以直接从主revm crate中访问,简化了依赖管理。
-
预编译合约重构:将预编译合约相关的常量从各个模块中分离出来,集中管理,提高了代码的可维护性。特别修正了G1_msm基础gas费用的常量值,确保计算准确性。
-
数据库接口增强:
- 新增了
TryDatabaseCommit特性,为数据库提交操作提供了更灵活的错误处理机制 - 将
CacheDB的字段分离到独立的Cache结构中,使缓存管理更加清晰 - 增加了
with_ref_db函数,方便创建带有引用数据库的实例
- 新增了
-
交易处理改进:
- 为
TxEnv添加了derive_tx_type函数,简化交易类型推导 - 修复了EIP-7702前不需要加载代码的问题
- 允许测试文件中重复出现v和yparity字段,提高测试灵活性
- 为
性能优化
-
BN128预编译优化:简化了配对运算(pairing)的实现,减少了不必要的计算步骤。
-
Gas处理改进:为
LoopControl添加了不可变gas API,避免不必要的复制操作。 -
跳转表检查:放宽了跳转表长度检查的条件,提高了执行效率。
新功能与扩展性
-
新增硬分叉支持:
- 添加了Interop硬分叉支持
- 为Optimism添加了Osaka分叉,以激活EOF功能
-
独立Host实现:移除了Context中的默认实现,允许开发者更灵活地自定义Host环境。
-
日志条目泛型化:使日志条目支持泛型类型,提高了框架的扩展性。
-
Optimism专用改进:
- 修复了存款交易处理和错误捕获机制
- 优化了L1区块数据加载逻辑
- 将
revm-optimismcrate重命名为更具识别度的op-revm
开发者体验提升
-
错误处理改进:统一了预编译错误类型命名,从
PrecompileErrors改为更符合惯例的PrecompileError。 -
文档增强:
- 为Bytecode crate添加了详细文档
- 修正了多处注释错误和文档链接
- 移除了过时的TODO标记
-
示例代码更新:示例现在直接使用主revm crate而非子模块,降低了入门门槛。
-
调试支持:为
Evm和EvmData类型实现了Debug特性,方便开发调试。
代码质量与维护
-
依赖管理:将所有依赖项移动到workspace级别统一管理。
-
无用代码清理:
- 移除了未使用的
optional_gas_refund功能 - 删除了未使用的源文件
- 清理了多余的实现和错误类型
- 移除了未使用的
-
类型导出优化:统一了EIP-2930和EIP-7702相关类型的导出位置。
总结
Revm v59版本在保持高性能的同时,通过架构优化和功能增强,进一步巩固了其作为Rust生态中最成熟EVM实现的地位。特别是对Optimism的深度支持和数据库接口的改进,使其能够更好地满足各类区块链开发需求。这些变更不仅提升了框架的稳定性和性能,也为开发者提供了更友好、更灵活的API接口。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00