探索APItizer:智能API模拟库
APItizer是一个创新的JavaScript库,它允许您为浏览器应用模拟API,利用JSON schema生成假数据。通过理解JSON schema语法(推荐参考本指南),您可以更加自由地控制和测试应用程序的前端部分。
更新提示
从v0.0.4版本升级到更高版本时,请注意现在需要调用apitizer.start()以使APItizer生效。此外,APItizer已从使用can.fixture切换到FakeXMLHttpRequest库,后者无需依赖jQuery或Zepto即可工作。启动和停止APItizer的方法如下:
apitizer.start(); // 启动APItizer
apitizer.stop(); // 停止APItizer
为何选择APItizer?
在开发单页应用程序时,平行开发前端与后端是理想的选择。APItizer让这个过程变得简单,只需定义JSON schema,即可生成符合规范的假数据。这不仅加速了开发进程,而且由于JSON schema定义了明确的数据契约,因此可用于验证实际后端响应。
安装
通过Bower安装APItizer:
bower install apitizer
然后通过HTML <script>标签引入,或使用AMD加载器如Require.js:
<script type="text/javascript" src="path/to/apitizer.js"></script>
define(["path/to/apitizer"], function(apitizer){ });
不要忘记在使用前启动APItizer:
apitizer.start();
操作示例
让我们创建一个简单的用户接口示例,它位于/users路径下并实现所有常见的REST操作。
首先定义schema:
var schema = {
type : "object",
properties : {
id : {
type : "integer"
},
username : {
type : "string"
},
password : {
type : "string"
}
}
};
将其添加到APItizer,并创建资源:
apitizer.addSchema('user', schema);
apitizer.fixture.resource('/users', apitizer.schemaStore('user', 10));
现在,你可以像使用真正的API一样进行AJAX请求:
// 获取10个用户
$.get('/users');
// 获取ID为1的用户
$.get('/users/1');
// 创建新用户
$.post('/users', {username : 'foo', password : 'bar'});
// 更新ID为1的用户信息
$.ajax('/users/1', {type : 'put', data : {username : 'baz'}});
// 删除ID为1的用户
$.ajax('/users/1', {type : 'delete'});
自定义生成器和API端点
APItizer提供了内置的类型生成器,但你也可以自定义生成策略。例如,如果你想更精细地控制某些字段的数据生成,或在一个对象中嵌入另一个对象的实例,可以通过覆盖默认生成器来实现。更多自定义操作,如模拟特定功能的API端点(如登录),APItizer也提供了解决方案。
响应延迟
为了模拟真实的网络延迟,APItizer还支持设置响应延迟,使得测试更具现实感。默认延迟是200毫秒,你可以轻松调整:
apitizer.fixture.delay(300); // 设置为300毫秒延迟
apitizer.fixture.delay(200, 500); // 在200至500毫秒之间随机延迟
更多信息
APItizer的文档存储在GitHub的wiki页面上,点击这里了解更多详细信息和高级用法。
总结,APItizer以其独特的JSON schema驱动的模拟特性,强大的自定义能力和灵活的配置选项,成为了前端开发中的强大工具。无论你是想平行开发前后端,还是在调试过程中创建临时数据源,APItizer都是一个值得尝试的优秀解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00