探索APItizer:智能API模拟库
APItizer是一个创新的JavaScript库,它允许您为浏览器应用模拟API,利用JSON schema生成假数据。通过理解JSON schema语法(推荐参考本指南),您可以更加自由地控制和测试应用程序的前端部分。
更新提示
从v0.0.4版本升级到更高版本时,请注意现在需要调用apitizer.start()以使APItizer生效。此外,APItizer已从使用can.fixture切换到FakeXMLHttpRequest库,后者无需依赖jQuery或Zepto即可工作。启动和停止APItizer的方法如下:
apitizer.start(); // 启动APItizer
apitizer.stop(); // 停止APItizer
为何选择APItizer?
在开发单页应用程序时,平行开发前端与后端是理想的选择。APItizer让这个过程变得简单,只需定义JSON schema,即可生成符合规范的假数据。这不仅加速了开发进程,而且由于JSON schema定义了明确的数据契约,因此可用于验证实际后端响应。
安装
通过Bower安装APItizer:
bower install apitizer
然后通过HTML <script>标签引入,或使用AMD加载器如Require.js:
<script type="text/javascript" src="path/to/apitizer.js"></script>
define(["path/to/apitizer"], function(apitizer){ });
不要忘记在使用前启动APItizer:
apitizer.start();
操作示例
让我们创建一个简单的用户接口示例,它位于/users路径下并实现所有常见的REST操作。
首先定义schema:
var schema = {
type : "object",
properties : {
id : {
type : "integer"
},
username : {
type : "string"
},
password : {
type : "string"
}
}
};
将其添加到APItizer,并创建资源:
apitizer.addSchema('user', schema);
apitizer.fixture.resource('/users', apitizer.schemaStore('user', 10));
现在,你可以像使用真正的API一样进行AJAX请求:
// 获取10个用户
$.get('/users');
// 获取ID为1的用户
$.get('/users/1');
// 创建新用户
$.post('/users', {username : 'foo', password : 'bar'});
// 更新ID为1的用户信息
$.ajax('/users/1', {type : 'put', data : {username : 'baz'}});
// 删除ID为1的用户
$.ajax('/users/1', {type : 'delete'});
自定义生成器和API端点
APItizer提供了内置的类型生成器,但你也可以自定义生成策略。例如,如果你想更精细地控制某些字段的数据生成,或在一个对象中嵌入另一个对象的实例,可以通过覆盖默认生成器来实现。更多自定义操作,如模拟特定功能的API端点(如登录),APItizer也提供了解决方案。
响应延迟
为了模拟真实的网络延迟,APItizer还支持设置响应延迟,使得测试更具现实感。默认延迟是200毫秒,你可以轻松调整:
apitizer.fixture.delay(300); // 设置为300毫秒延迟
apitizer.fixture.delay(200, 500); // 在200至500毫秒之间随机延迟
更多信息
APItizer的文档存储在GitHub的wiki页面上,点击这里了解更多详细信息和高级用法。
总结,APItizer以其独特的JSON schema驱动的模拟特性,强大的自定义能力和灵活的配置选项,成为了前端开发中的强大工具。无论你是想平行开发前后端,还是在调试过程中创建临时数据源,APItizer都是一个值得尝试的优秀解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00