VictoriaMetrics集群资源优化实践:vmselect与vmstorage的合理配置
2025-05-15 21:53:45作者:温玫谨Lighthearted
背景概述
在大型监控系统中,VictoriaMetrics作为高性能的时序数据库解决方案,其集群模式(vminsert/vmselect/vmstorage)的资源分配与配置优化至关重要。本文基于一个实际生产案例,探讨如何合理配置vmselect和vmstorage组件以应对高查询负载场景。
集群现状分析
某生产环境部署了较大规模的VictoriaMetrics集群(v1.93.14),主要配置如下:
- vminsert:50个副本,每个2核1G内存
- vmselect:25个副本,每个24核78G内存
- vmstorage:配置24核200G内存
监控数据显示当前集群存在以下特征:
- vmselect组件CPU利用率高达95%,内存使用峰值60%
- 存在持续的高ChurnRate(2.5亿/24h)
- 部分查询因标签超限被截断(LabelsLimitExceeded)
- 查询错误率(RequestsErrorRate)较高
关键问题诊断
1. 查询负载瓶颈定位
通过资源监控分析发现:
- vmselect组件已成为明显的性能瓶颈
- vmstorage组件资源使用率相对合理(CPU<50%,内存<70%)
- vminsert组件负载较低,存在资源浪费
这表明当前系统的主要压力来自查询而非写入,应优先优化查询处理能力。
2. 高ChurnRate问题
稳定的高ChurnRate表明可能存在:
- 时间相关标签导致的时间序列膨胀
- 标签数量超限被截断(当前版本会丢弃超限标签,新版本将拒绝整个时间序列)
3. 查询错误分析
日志检查发现多数错误源于:
- Grafana告警规则使用了不正确的查询语句
- 部分查询超出资源限制
优化方案
1. 查询处理能力扩展
针对查询负载的增长,建议采取以下措施:
水平扩展方案:
- 增加vmselect副本数量(如从25增加到27-30)
- 保持现有单个pod的资源规格(24核78G)
- 确保负载均衡器(vmauth)正确分发请求
垂直扩展考量:
- 对于重查询(如30天范围),保持较高单pod资源配置有利于降低延迟
- 对于轻量查询,增加pod数量可提高并发处理能力
2. 配置参数调优
当前查询相关参数:
search.maxUniqueTimeseries: "10000000"
search.maxSamplesPerQuery: "4000000000"
search.maxConcurrentRequests: 48
优化建议:
- 将maxConcurrentRequests调整为CPU核数的1-2倍(如24-48)
- 评估降低maxSamplesPerQuery的可能性
- 升级到新版本后,需严格处理标签超限问题
3. 架构优化建议
长期考虑可采用以下架构优化:
- 查询分类路由:将重查询和轻查询分流到不同的vmselect组
- 资源隔离:为关键业务查询预留专用资源
- 查询优化:重写低效查询,减少扫描范围
实施效果验证
优化后应关注以下指标变化:
- vmselect的CPU/内存使用率是否降至合理水平(如<80%)
- 查询错误率是否显著下降
- 查询延迟(P99)是否改善
- 系统整体稳定性是否提升
总结
VictoriaMetrics集群在高查询负载场景下,vmselect组件通常成为首要瓶颈。通过合理的水平扩展与参数调优,可以在不显著增加资源消耗的情况下提升系统整体查询能力。同时,对查询语句的优化和标签基数的控制也是保证系统长期稳定运行的关键因素。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8