VictoriaMetrics集群资源优化实践:vmselect与vmstorage的合理配置
2025-05-15 20:52:01作者:温玫谨Lighthearted
背景概述
在大型监控系统中,VictoriaMetrics作为高性能的时序数据库解决方案,其集群模式(vminsert/vmselect/vmstorage)的资源分配与配置优化至关重要。本文基于一个实际生产案例,探讨如何合理配置vmselect和vmstorage组件以应对高查询负载场景。
集群现状分析
某生产环境部署了较大规模的VictoriaMetrics集群(v1.93.14),主要配置如下:
- vminsert:50个副本,每个2核1G内存
- vmselect:25个副本,每个24核78G内存
- vmstorage:配置24核200G内存
监控数据显示当前集群存在以下特征:
- vmselect组件CPU利用率高达95%,内存使用峰值60%
- 存在持续的高ChurnRate(2.5亿/24h)
- 部分查询因标签超限被截断(LabelsLimitExceeded)
- 查询错误率(RequestsErrorRate)较高
关键问题诊断
1. 查询负载瓶颈定位
通过资源监控分析发现:
- vmselect组件已成为明显的性能瓶颈
- vmstorage组件资源使用率相对合理(CPU<50%,内存<70%)
- vminsert组件负载较低,存在资源浪费
这表明当前系统的主要压力来自查询而非写入,应优先优化查询处理能力。
2. 高ChurnRate问题
稳定的高ChurnRate表明可能存在:
- 时间相关标签导致的时间序列膨胀
- 标签数量超限被截断(当前版本会丢弃超限标签,新版本将拒绝整个时间序列)
3. 查询错误分析
日志检查发现多数错误源于:
- Grafana告警规则使用了不正确的查询语句
- 部分查询超出资源限制
优化方案
1. 查询处理能力扩展
针对查询负载的增长,建议采取以下措施:
水平扩展方案:
- 增加vmselect副本数量(如从25增加到27-30)
- 保持现有单个pod的资源规格(24核78G)
- 确保负载均衡器(vmauth)正确分发请求
垂直扩展考量:
- 对于重查询(如30天范围),保持较高单pod资源配置有利于降低延迟
- 对于轻量查询,增加pod数量可提高并发处理能力
2. 配置参数调优
当前查询相关参数:
search.maxUniqueTimeseries: "10000000"
search.maxSamplesPerQuery: "4000000000"
search.maxConcurrentRequests: 48
优化建议:
- 将maxConcurrentRequests调整为CPU核数的1-2倍(如24-48)
- 评估降低maxSamplesPerQuery的可能性
- 升级到新版本后,需严格处理标签超限问题
3. 架构优化建议
长期考虑可采用以下架构优化:
- 查询分类路由:将重查询和轻查询分流到不同的vmselect组
- 资源隔离:为关键业务查询预留专用资源
- 查询优化:重写低效查询,减少扫描范围
实施效果验证
优化后应关注以下指标变化:
- vmselect的CPU/内存使用率是否降至合理水平(如<80%)
- 查询错误率是否显著下降
- 查询延迟(P99)是否改善
- 系统整体稳定性是否提升
总结
VictoriaMetrics集群在高查询负载场景下,vmselect组件通常成为首要瓶颈。通过合理的水平扩展与参数调优,可以在不显著增加资源消耗的情况下提升系统整体查询能力。同时,对查询语句的优化和标签基数的控制也是保证系统长期稳定运行的关键因素。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
189
209
暂无简介
Dart
630
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.66 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
270
仓颉编译器源码及 cjdb 调试工具。
C++
128
858