VictoriaMetrics集群资源优化实践:vmselect与vmstorage的合理配置
2025-05-15 10:10:10作者:温玫谨Lighthearted
背景概述
在大型监控系统中,VictoriaMetrics作为高性能的时序数据库解决方案,其集群模式(vminsert/vmselect/vmstorage)的资源分配与配置优化至关重要。本文基于一个实际生产案例,探讨如何合理配置vmselect和vmstorage组件以应对高查询负载场景。
集群现状分析
某生产环境部署了较大规模的VictoriaMetrics集群(v1.93.14),主要配置如下:
- vminsert:50个副本,每个2核1G内存
- vmselect:25个副本,每个24核78G内存
- vmstorage:配置24核200G内存
监控数据显示当前集群存在以下特征:
- vmselect组件CPU利用率高达95%,内存使用峰值60%
- 存在持续的高ChurnRate(2.5亿/24h)
- 部分查询因标签超限被截断(LabelsLimitExceeded)
- 查询错误率(RequestsErrorRate)较高
关键问题诊断
1. 查询负载瓶颈定位
通过资源监控分析发现:
- vmselect组件已成为明显的性能瓶颈
- vmstorage组件资源使用率相对合理(CPU<50%,内存<70%)
- vminsert组件负载较低,存在资源浪费
这表明当前系统的主要压力来自查询而非写入,应优先优化查询处理能力。
2. 高ChurnRate问题
稳定的高ChurnRate表明可能存在:
- 时间相关标签导致的时间序列膨胀
- 标签数量超限被截断(当前版本会丢弃超限标签,新版本将拒绝整个时间序列)
3. 查询错误分析
日志检查发现多数错误源于:
- Grafana告警规则使用了不正确的查询语句
- 部分查询超出资源限制
优化方案
1. 查询处理能力扩展
针对查询负载的增长,建议采取以下措施:
水平扩展方案:
- 增加vmselect副本数量(如从25增加到27-30)
- 保持现有单个pod的资源规格(24核78G)
- 确保负载均衡器(vmauth)正确分发请求
垂直扩展考量:
- 对于重查询(如30天范围),保持较高单pod资源配置有利于降低延迟
- 对于轻量查询,增加pod数量可提高并发处理能力
2. 配置参数调优
当前查询相关参数:
search.maxUniqueTimeseries: "10000000"
search.maxSamplesPerQuery: "4000000000"
search.maxConcurrentRequests: 48
优化建议:
- 将maxConcurrentRequests调整为CPU核数的1-2倍(如24-48)
- 评估降低maxSamplesPerQuery的可能性
- 升级到新版本后,需严格处理标签超限问题
3. 架构优化建议
长期考虑可采用以下架构优化:
- 查询分类路由:将重查询和轻查询分流到不同的vmselect组
- 资源隔离:为关键业务查询预留专用资源
- 查询优化:重写低效查询,减少扫描范围
实施效果验证
优化后应关注以下指标变化:
- vmselect的CPU/内存使用率是否降至合理水平(如<80%)
- 查询错误率是否显著下降
- 查询延迟(P99)是否改善
- 系统整体稳定性是否提升
总结
VictoriaMetrics集群在高查询负载场景下,vmselect组件通常成为首要瓶颈。通过合理的水平扩展与参数调优,可以在不显著增加资源消耗的情况下提升系统整体查询能力。同时,对查询语句的优化和标签基数的控制也是保证系统长期稳定运行的关键因素。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869