MMDetection中Grounding DINO模型推理报错分析与解决方案
2025-05-04 05:11:12作者:卓艾滢Kingsley
问题背景
在使用MMDetection框架中的Grounding DINO模型进行目标检测推理时,开发者可能会遇到一个与transformers库版本相关的错误。该错误会导致模型无法正常处理文本输入,最终抛出"ValueError: too many values to unpack (expected 2)"异常。
错误现象
当执行Grounding DINO模型的推理脚本时,系统会报告以下关键错误信息:
- 模型加载时出现警告:"unexpected key in source state_dict: language_model.language_backbone.body.model.embeddings.position_ids"
- 最终抛出ValueError异常,提示"too many values to unpack (expected 2)"
- 错误发生在transformers库的modeling_attn_mask_utils.py文件中
根本原因分析
经过深入分析,这个问题源于transformers库的版本兼容性问题。Grounding DINO模型在实现时依赖transformers库来处理文本输入,但不同版本的transformers库在注意力掩码处理上存在API差异。
具体来说:
- 最新版transformers(4.44.1)修改了注意力掩码处理的内部实现
- Grounding DINO模型代码基于较早版本的transformers API编写
- 当使用新版transformers时,模型期望的二维注意力掩码格式与新版本产生冲突
解决方案
解决此问题的最直接方法是降级transformers库版本。经过验证,将transformers降级到4.32版本可以完美解决兼容性问题。
具体操作步骤如下:
-
首先卸载当前安装的transformers版本:
pip uninstall transformers -
安装指定版本的transformers:
pip install transformers==4.32.0 -
重新运行推理脚本,问题应该得到解决
预防措施
为了避免类似问题,建议:
- 在使用预训练模型时,仔细查看官方文档中推荐的依赖版本
- 在虚拟环境中管理项目依赖,避免全局环境中的版本冲突
- 对于关键项目,可以使用requirements.txt或environment.yml明确指定所有依赖版本
技术细节补充
这个问题的本质是深度学习框架中常见的API兼容性问题。transformers库作为自然语言处理领域的核心工具,其API在不同版本间可能会有较大变化。Grounding DINO模型使用transformers来处理文本输入,当库的底层实现发生变化时,就可能出现这种维度不匹配的错误。
对于深度学习开发者来说,理解这类错误的本质非常重要。它不仅限于transformers库,在任何使用第三方库的项目中都可能出现。掌握快速定位和解决这类问题的方法,是提高开发效率的关键技能之一。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896