Geogram项目中周期性网格的保存与处理技术解析
2025-07-04 05:06:00作者:卓炯娓
引言
在计算几何领域,周期性网格是一种特殊的网格结构,它通过边界周期性连接来表现无限重复的空间模式。Geogram作为一个功能强大的计算几何库,包含对周期性网格的支持。本文将深入探讨如何在Geogram项目中正确处理和保存周期性三维Delaunay网格。
周期性网格的特点
周期性网格与普通网格最大的区别在于其边界处理方式。在周期性网格中:
- 网格边界上的顶点会与对侧边界上的对应顶点形成连接
- 每个顶点可能有多个"实例",具体取决于观察角度
- 顶点坐标需要根据周期性条件进行适当平移
问题现象分析
在处理周期性网格保存时,开发者常会遇到两个典型问题:
- 顶点坐标异常:输出的顶点坐标值异常大,远离实际区域,且存在大量重复坐标
- 索引越界:四面体单元的顶点索引值远超实际输出的顶点数量
这些问题的根源在于没有正确处理周期性网格中顶点的"实例"特性。
解决方案实现
顶点坐标获取
在周期性网格中,不能直接使用vertex_ptr()
函数获取顶点坐标,而应该使用PeriodicDelaunay3d::vertex()
方法。该方法会考虑周期性条件,返回经过适当平移后的顶点坐标。
// 正确获取周期性顶点坐标的方式
double x = delaunay_->vertex(i)[0];
double y = delaunay_->vertex(i)[1];
double z = delaunay_->vertex(i)[2];
顶点索引映射
由于周期性网格中一个物理顶点可能有多个实例,需要建立从实例索引到实际输出索引的映射:
- 首先遍历所有四面体单元,收集所有使用的顶点实例
- 为每个实际使用的顶点实例分配唯一的输出索引
- 建立实例索引到输出索引的映射表
- 在输出四面体单元时,使用映射后的索引
// 创建顶点实例到输出索引的映射
vector<index_t> pv2outputindices(delaunay_->nb_vertices_non_periodic_*27);
index_t j = 0;
for(index_t i=0; i<pv2outputindices.size(); ++i) {
if(顶点实例i被使用) {
pv2outputindices[i] = j++;
}
}
完整保存流程
- 收集单元信息:遍历所有四面体单元,记录使用的顶点实例
- 建立映射关系:为每个使用的顶点实例分配输出索引
- 生成顶点列表:根据映射关系生成最终的顶点坐标列表
- 转换单元索引:将单元中的顶点实例索引转换为输出索引
- 保存网格数据:将处理后的数据写入文件
技术要点总结
- 周期性顶点处理:必须使用专门的API获取顶点坐标,考虑周期性平移
- 索引映射机制:需要建立从顶点实例到输出索引的转换表
- 内存优化:只输出实际使用的顶点实例,避免冗余数据
- 边界条件处理:特别注意无限单元和边界单元的特殊处理
实际应用建议
在实际项目中处理周期性网格时,建议:
- 充分理解周期性网格的数据结构特点
- 使用Geogram提供的专用API处理周期性顶点
- 实现高效的索引映射机制
- 对输出结果进行验证,确保网格拓扑正确性
通过本文介绍的方法,开发者可以正确保存和处理Geogram中的周期性网格数据,为后续的数值计算和几何分析提供可靠的基础。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193