Transformers-Tutorials项目中的SAM模型微调问题分析
2025-05-21 07:07:18作者:昌雅子Ethen
问题背景
在使用Transformers-Tutorials项目中提供的SAM(Segment Anything Model)微调教程时,用户遇到了一个典型的问题:在训练过程中出现了巨大的负损失值。这个问题特别值得关注,因为它揭示了在图像分割任务中数据预处理的关键性。
问题现象
在训练过程中,损失值呈现以下异常情况:
- 初始epoch损失值就达到-869,916
- 随着训练进行,损失值急剧下降至-256,580,268
- 这种异常现象表明模型没有正常学习,而是出现了数值不稳定
根本原因分析
经过深入调查,发现问题的根源在于两个方面:
-
标签颜色反转问题:在图像分割任务中,模型期望的标签格式通常是前景(目标物体)为白色(像素值255),背景为黑色(像素值0)。如果标签颜色反转,会导致模型学习完全相反的目标。
-
标签格式问题:更关键的是标签文件的格式和编码问题。正确的标签应该满足以下技术规格:
- 文件格式应为TIFF
- 使用小端字节序(little-endian)
- 32位每样本(bps=32)
- 无压缩(compression=none)
- 黑色表示零值(PhotometricInterpretation=BlackIsZero)
- 固定分辨率(如256x256)
解决方案
要解决这个问题,需要采取以下步骤:
-
标签颜色校正:
- 确保目标物体在标签中用白色表示(像素值255)
- 背景用黑色表示(像素值0)
- 可以使用图像处理库如PIL或OpenCV进行颜色反转
-
标签格式转换:
- 将标签转换为TIFF格式
- 确保使用正确的位深度(32位)
- 设置正确的光度解释参数
- 保持分辨率一致
-
数据预处理验证:
- 在训练前可视化部分样本,确认标签格式正确
- 检查标签的像素值分布,确保只有0和255两种值
- 验证图像和标签的对齐情况
经验总结
这个案例给我们几个重要的启示:
-
数据格式的重要性:在深度学习项目中,数据格式的细微差别可能导致完全不同的训练结果。
-
预处理验证的必要性:在开始训练前,必须对数据进行全面的检查和验证。
-
错误诊断方法:当遇到异常训练现象时,应该首先检查数据质量,然后再考虑模型结构或超参数问题。
-
标准化流程:建立标准化的数据预处理流程可以避免这类问题的发生。
通过解决这个问题,我们不仅修复了当前项目的训练异常,也为今后处理类似问题积累了宝贵经验。在计算机视觉任务中,特别是涉及图像分割的场景,数据格式和标签表示的标准化是确保模型正常训练的关键因素。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137