C++20 范围视图:take、drop 及其变体详解
2025-06-24 09:51:07作者:尤辰城Agatha
本文基于 CXX20-The-Complete-Guide 项目内容,深入解析 C++20 标准库中的四种重要范围视图:take_view、take_while_view、drop_view 和 drop_while_view。这些视图为开发者提供了强大的范围操作能力,能够高效地处理和转换数据序列。
1. take_view:获取前 N 个元素
1.1 基本概念
std::ranges::take_view 是一个范围适配器,用于获取源范围的前 N 个元素。其核心特性包括:
- 类型:
std::ranges::take_view<> - 内容:源范围的前 N 个元素(最多)
- 适配器:
std::views::take() - 元素类型:与源范围相同
- 要求:至少是输入范围
1.2 使用方式
take_view 可以通过构造函数或适配器创建:
std::vector<int> data{1, 2, 3, 4, 5, 6};
// 使用构造函数
auto tv1 = std::ranges::take_view{data, 3};
// 使用适配器
auto tv2 = std::views::take(data, 3);
auto tv3 = data | std::views::take(3);
1.3 特殊优化
适配器会根据输入类型进行智能优化:
- 输入为空视图时直接返回空视图
- 对于随机访问范围,可能返回优化后的子范围(如子范围、iota视图等)
1.4 性能特点
- 迭代器:使用源范围的迭代器
- 通用性:当源范围是通用范围时,take_view 也是通用范围
- 缓存:无缓存机制
2. take_while_view:获取满足条件的连续元素
2.1 基本概念
std::ranges::take_while_view 获取源范围中满足谓词条件的连续前导元素:
- 类型:
std::ranges::take_while_view<> - 内容:满足谓词的前导连续元素
- 适配器:
std::views::take_while()
2.2 使用示例
std::vector<int> data{1, 2, 3, 4, 5};
auto is_less_than_4 = [](int x) { return x < 4; };
// 获取小于4的连续前导元素
auto twv = data | std::views::take_while(is_less_than_4);
// 结果:1, 2, 3
2.3 注意事项
- 谓词必须满足
std::predicate概念 - 谓词不应修改传递的值(应声明为按值或const引用接收参数)
3. drop_view:跳过前 N 个元素
3.1 基本概念
std::ranges::drop_view 与 take_view 相反,它跳过源范围的前 N 个元素:
- 类型:
std::ranges::drop_view<> - 内容:源范围中除前 N 个元素外的所有元素
- 适配器:
std::views::drop()
3.2 使用示例
std::vector<int> data{1, 2, 3, 4, 5};
auto dv = data | std::views::drop(2);
// 结果:3, 4, 5
3.3 性能特点
- 缓存机制:首次调用 begin() 时会缓存结果(除非是随机访问范围)
- 性能建议:重用 drop_view 比重复创建更高效
3.4 注意事项
- 修改底层范围后,缓存的迭代器可能失效
- const drop_view 的迭代能力受限(需要随机访问范围)
4. drop_while_view:跳过满足条件的连续前导元素
4.1 基本概念
std::ranges::drop_while_view 跳过源范围中满足谓词条件的连续前导元素:
- 类型:
std::ranges::drop_while_view<> - 内容:跳过满足谓词的前导元素后的所有元素
- 适配器:
std::views::drop_while()
4.2 使用示例
std::vector<int> data{1, 2, 3, 4, 5};
auto is_less_than_3 = [](int x) { return x < 3; };
auto dwv = data | std::views::drop_while(is_less_than_3);
// 结果:3, 4, 5
4.3 特殊注意事项
- 缓存机制:总是缓存 begin() 结果
- const限制:const drop_while_view 不能调用 begin()
5. 综合比较
| 特性 | take_view | take_while_view | drop_view | drop_while_view |
|---|---|---|---|---|
| 缓存机制 | 无 | 无 | 有 | 有 |
| 通用范围 | 可能 | 从不 | 可能 | 可能 |
| 长度范围 | 可能 | 从不 | 可能 | 可能 |
| 常量可迭代 | 可能 | 可能 | 受限 | 从不 |
6. 实际应用建议
- 性能优化:对于 drop 系列视图,尽量重用视图对象而非重复创建
- 范围修改:避免在修改底层范围后继续使用缓存的视图
- 泛型编程:使用转发引用(auto&&)处理可能为const的视图
- 谓词安全:确保谓词不修改传递的值,按值或const引用接收参数
这些范围视图为C++20中的范围处理提供了强大的工具,合理使用可以显著提高代码的简洁性和效率。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758