YOLOv9与YOLOv7系列模型在TensorRT上的性能对比分析
2025-05-25 07:55:48作者:霍妲思
引言
目标检测作为计算机视觉领域的核心任务之一,其模型性能直接影响实际应用效果。本文针对YOLOv9和YOLOv7系列模型在TensorRT引擎上的性能表现进行深入分析,通过对比测试数据揭示各模型在推理速度、延迟等方面的差异,为开发者提供模型选型参考。
测试环境配置
本次性能测试采用以下硬件配置:
- GPU:NVIDIA RTX 4090(计算能力8.9)
- CPU:AMD Ryzen 7 3700X 8核处理器
- 内存:16GB
软件环境:
- TensorRT版本:8.6.1
- 测试方法:所有模型均转换为ONNX格式并启用动态批处理,使用TensorRT Engine Explorer(TREx)进行分析
模型性能对比
基础性能指标
我们主要关注三个核心指标:
- 吞吐量(IPS):每秒处理的推理数量
- 平均时间:各层延迟的总和
- 延迟:包括最小、最大、平均、中位数及99百分位延迟
YOLOv7与YOLOv9对比数据
| 模型名称 | 吞吐量(IPS) | 平均时间(ms) | 最小延迟(ms) | 最大延迟(ms) | 平均延迟(ms) |
|---|---|---|---|---|---|
| YOLOv7 | 978 | 1.441 | 1.012 | 1.104 | 1.020 |
| YOLOv7x | 609 | 2.065 | 1.613 | 1.751 | 1.640 |
| YOLOv9-c | 798 | 2.049 | 1.246 | 1.359 | 1.251 |
| YOLOv9-e | 353 | 4.261 | 2.807 | 3.032 | 2.823 |
深入分析
-
吞吐量表现:
- YOLOv7基础版表现最佳,达到978 IPS
- YOLOv9-c略低于YOLOv7,但优于YOLOv7x
- 大型模型YOLOv9-e的吞吐量最低,这与模型复杂度直接相关
-
延迟特性:
- YOLOv9-c在延迟表现上优于YOLOv7x,平均延迟降低约24%
- 所有模型的99百分位延迟与平均延迟接近,说明推理过程稳定
-
模型规模影响:
- 随着模型参数增加,性能下降明显
- YOLOv9-e的延迟是YOLOv9-c的2.26倍,而吞吐量仅为后者的44%
技术要点说明
-
模型优化:
- 测试中使用了转换后的YOLOv9模型(yolov9-c-converted.pt),移除了PGI辅助分支
- 这种优化显著提升了推理效率,使模型架构与GELAN系列保持一致
-
TensorRT优势:
- 通过TensorRT的层融合和精度优化(如FP16),大幅提升推理速度
- 动态批处理能力使模型更适合实际部署场景
-
不同设备表现:
- 在RTX 2080Ti上的测试显示类似趋势,但绝对性能低于RTX 4090
- 嵌入式设备如Jetson Xavier AGX上,YOLOv9-c可达到约36fps的实时性能
实际应用建议
-
高吞吐场景:
- 优先考虑YOLOv7基础版
- 若需要更好精度,YOLOv9-c是平衡选择
-
精度优先场景:
- YOLOv9-e提供最佳检测质量
- 需接受较高的计算资源消耗
-
边缘设备部署:
- 建议使用转换后的YOLOv9模型
- 启用FP16精度可显著提升性能
结论
YOLOv9系列在保持较高精度的同时,通过模型结构优化在TensorRT上展现了有竞争力的性能表现。特别是YOLOv9-c模型,在吞吐量和延迟方面都优于YOLOv7x,成为中大型模型的优选方案。开发者应根据具体应用场景在速度和精度之间做出权衡,而TensorRT的优化能力为各类部署环境提供了良好的支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1