Dinky项目在Flink 1.19.1版本中提交K8S任务时的类加载问题解析
问题背景
在分布式计算领域,Apache Flink作为流批一体的大数据处理框架,其类加载机制对于任务执行至关重要。近期在使用Dinky项目(一个基于Flink的SQL开发平台)时,发现当向Kubernetes集群提交包含Protobuf类的JAR任务时,Flink 1.19.1版本会出现ClassNotFoundException异常,而同样的操作在Flink 1.16版本却能正常工作。
技术分析
类加载机制变更
在Flink 1.19.1版本中,类加载器的构建方式发生了重要变化。具体体现在org.apache.flink.runtime.execution.librarycache.BlobLibraryCacheManager.getOrResolveClassLoader()方法的实现上。新版本对类加载器的处理逻辑进行了重构,导致在特定场景下无法正确加载用户JAR中的类。
问题根源
通过深入分析发现,问题的核心在于Dinky客户端在提交任务时的JAR包处理逻辑:
-
配置传递问题:Dinky调用
addJar方法后,仅将JAR配置添加到了TableEnvironment中,而实际任务执行的pipeline.jars配置来自StreamExecutionEnvironment。这导致最终提交的任务配置中缺少用户JAR的引用。 -
类加载隔离:在K8S应用模式下,JobMaster和TaskManager构建的类加载器无法正确加载用户JAR中的类,导致在反序列化作业数据时出现ClassNotFoundException。
解决方案
针对这一问题,需要对Dinky的CustomTableEnvironment类中的addJar()方法进行修改。关键修改点包括:
- 确保JAR包路径同时添加到TableEnvironment和StreamExecutionEnvironment的配置中
- 正确处理JAR包在分布式环境中的传输和加载机制
修改后的实现需要特别注意:
- 保持与Flink 1.19.1版本类加载机制的兼容性
- 确保在K8S环境下JAR包能够被正确分发和加载
- 维持与低版本Flink的向后兼容性
影响范围
该问题主要影响以下场景:
- 使用Dinky 1.2.0版本
- 运行在Flink 1.19.1版本的K8S应用模式
- 任务中包含自定义类(特别是Protobuf生成的类)
- 通过JAR方式提交的任务
值得注意的是,相同的操作在以下场景可以正常工作:
- Flink 1.16版本环境
- K8S会话模式通过Web界面提交的任务
最佳实践建议
对于需要使用Dinky提交包含自定义类任务到K8S集群的用户,建议:
- 对于关键业务系统,暂时保持使用Flink 1.16版本
- 如果必须使用Flink 1.19.1,可以考虑以下替代方案:
- 将依赖类打包到Flink的基础镜像中
- 通过K8S的volume挂载方式提供依赖JAR
- 关注Dinky官方对该问题的修复进展,及时升级到包含修复的版本
总结
这个问题揭示了Flink版本升级过程中类加载机制变化带来的兼容性挑战,也提醒我们在使用开源项目时需要关注版本间的行为差异。对于Dinky这样的Flink生态工具,保持与Flink各版本的兼容性测试尤为重要。随着Flink和Dinky的持续发展,相信这类问题会得到更好的解决。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C077
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00