Dinky项目在Flink 1.19.1版本中提交K8S任务时的类加载问题解析
问题背景
在分布式计算领域,Apache Flink作为流批一体的大数据处理框架,其类加载机制对于任务执行至关重要。近期在使用Dinky项目(一个基于Flink的SQL开发平台)时,发现当向Kubernetes集群提交包含Protobuf类的JAR任务时,Flink 1.19.1版本会出现ClassNotFoundException异常,而同样的操作在Flink 1.16版本却能正常工作。
技术分析
类加载机制变更
在Flink 1.19.1版本中,类加载器的构建方式发生了重要变化。具体体现在org.apache.flink.runtime.execution.librarycache.BlobLibraryCacheManager.getOrResolveClassLoader()方法的实现上。新版本对类加载器的处理逻辑进行了重构,导致在特定场景下无法正确加载用户JAR中的类。
问题根源
通过深入分析发现,问题的核心在于Dinky客户端在提交任务时的JAR包处理逻辑:
-
配置传递问题:Dinky调用
addJar方法后,仅将JAR配置添加到了TableEnvironment中,而实际任务执行的pipeline.jars配置来自StreamExecutionEnvironment。这导致最终提交的任务配置中缺少用户JAR的引用。 -
类加载隔离:在K8S应用模式下,JobMaster和TaskManager构建的类加载器无法正确加载用户JAR中的类,导致在反序列化作业数据时出现ClassNotFoundException。
解决方案
针对这一问题,需要对Dinky的CustomTableEnvironment类中的addJar()方法进行修改。关键修改点包括:
- 确保JAR包路径同时添加到TableEnvironment和StreamExecutionEnvironment的配置中
- 正确处理JAR包在分布式环境中的传输和加载机制
修改后的实现需要特别注意:
- 保持与Flink 1.19.1版本类加载机制的兼容性
- 确保在K8S环境下JAR包能够被正确分发和加载
- 维持与低版本Flink的向后兼容性
影响范围
该问题主要影响以下场景:
- 使用Dinky 1.2.0版本
- 运行在Flink 1.19.1版本的K8S应用模式
- 任务中包含自定义类(特别是Protobuf生成的类)
- 通过JAR方式提交的任务
值得注意的是,相同的操作在以下场景可以正常工作:
- Flink 1.16版本环境
- K8S会话模式通过Web界面提交的任务
最佳实践建议
对于需要使用Dinky提交包含自定义类任务到K8S集群的用户,建议:
- 对于关键业务系统,暂时保持使用Flink 1.16版本
- 如果必须使用Flink 1.19.1,可以考虑以下替代方案:
- 将依赖类打包到Flink的基础镜像中
- 通过K8S的volume挂载方式提供依赖JAR
- 关注Dinky官方对该问题的修复进展,及时升级到包含修复的版本
总结
这个问题揭示了Flink版本升级过程中类加载机制变化带来的兼容性挑战,也提醒我们在使用开源项目时需要关注版本间的行为差异。对于Dinky这样的Flink生态工具,保持与Flink各版本的兼容性测试尤为重要。随着Flink和Dinky的持续发展,相信这类问题会得到更好的解决。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00