Drogon框架中请求生命周期追踪的实现方案
2025-05-18 08:05:37作者:翟萌耘Ralph
drogon
Drogon: A C++14/17/20 based HTTP web application framework running on Linux/macOS/Unix/Windows
在现代Web开发中,对请求处理全链路的耗时监控是性能优化和问题排查的重要手段。本文将深入探讨如何在Drogon框架中实现请求生命周期的完整追踪。
请求生命周期监控的核心需求
典型的HTTP请求处理流程通常包含以下阶段:
- 路由预处理阶段
- 控制器处理阶段
- 响应发送前处理阶段
- 响应发送完成阶段
开发者往往需要精确测量各个阶段的耗时,以及整个请求的总处理时间,这对性能调优和异常排查至关重要。
Drogon框架的解决方案
Drogon框架提供了多种实现请求追踪的技术方案:
1. Request Attributes机制
最直接的实现方式是利用Drogon的Request对象attributes特性。可以在请求开始时创建一个计时对象:
app().registerPreRoutingAdvice(
[](const HttpRequestPtr &req, AdviceCallback &&acb) {
auto start = std::chrono::steady_clock::now();
req->setAttribute("request_start", start);
acb();
});
在请求结束时获取并计算耗时:
app().registerPostSendingAdvice(
[](const HttpRequestPtr &req) {
auto end = std::chrono::steady_clock::now();
auto start = req->getAttribute<std::chrono::steady_clock::time_point>(
"request_start");
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(
end - start);
LOG_INFO << "Request took " << duration.count() << "ms";
});
2. 内置插件方案
对于生产环境,Drogon提供了更成熟的解决方案:
- AccessLog插件:可直接记录每个请求的处理时间
- Prometheus插件:提供完整的指标监控体系,包括请求耗时等关键指标
这些插件开箱即用,适合需要全面监控的场景。
高级实现技巧
对于需要更精细控制的场景,可以结合Drogon的中间件机制:
- 创建自定义计时中间件:
class TimingMiddleware : public HttpMiddleware {
public:
void invoke(const HttpRequestPtr &req,
MiddlewareNextCallback &&next) override {
auto start = std::chrono::steady_clock::now();
req->setAttribute("middleware_start", start);
next([start](const HttpResponsePtr &resp) {
auto end = std::chrono::steady_clock::now();
auto duration = end - start;
// 处理耗时数据
});
}
};
- 多阶段计时:可以在attributes中存储多个时间点,实现分段统计
方案选型建议
- 简单需求:使用Request attributes方案
- 生产环境:优先考虑AccessLog或Prometheus插件
- 定制需求:结合中间件机制实现
通过合理运用这些技术,开发者可以轻松构建完整的请求生命周期监控体系,为应用性能优化提供数据支撑。
drogon
Drogon: A C++14/17/20 based HTTP web application framework running on Linux/macOS/Unix/Windows
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178