Seurat空间转录组分析中Overlay功能在Harmony整合后的异常处理
2025-07-02 15:42:43作者:傅爽业Veleda
背景介绍
在单细胞和空间转录组数据分析中,Seurat是一个广泛使用的R语言工具包。其中Overlay功能常用于对空间数据进行区域裁剪,这在分析特定解剖区域时非常有用。然而,当数据集经过不同整合方法处理后,这一功能的稳定性表现存在差异。
问题现象
用户在使用Seurat V5进行空间转录组数据分析时,发现Overlay功能在原始数据上工作正常,但在经过Harmony整合后出现异常。具体表现为:
- 原始数据上成功执行:
mouse_905_orig[["AC_left"]] <- Overlay(mouse_905_orig_orig[["x95"]], lAC_to_crop, invert = FALSE)
- Harmony整合后失败:
mouse_905_harmony[["AC_left"]] <- Overlay(mouse_905_harmony[["x95"]], lAC_to_crop, invert = FALSE)
错误信息提示点数组必须包含0或多个元素。
问题排查与解决方案
1. 不同整合方法的比较
测试发现,当使用RPCA方法进行整合时,Overlay功能仍能正常工作:
mouse_905_integrated_rpca[["AC_left"]] <- Overlay(mouse_905_integrated_rpca[["x95"]], lAC_to_crop, invert = FALSE)
这表明问题可能与Harmony整合过程的特定实现有关。
2. 关键发现
通过调整Harmony整合的参数配置,发现问题可以得到解决:
- 问题配置:使用
assay = "SCT"
- 解决方案:改用
normalization.method = "SCT"
这一调整使得Overlay功能在Harmony整合后的数据上恢复正常。
技术原理分析
Harmony整合与数据结构的改变
Harmony整合过程可能会改变原始数据的空间坐标信息结构,特别是:
- 坐标精度变化:整合算法可能对坐标值进行归一化或缩放
- 数据结构重组:整合后的对象可能采用不同的内部存储格式
- 元数据处理:空间多边形信息在整合过程中可能未被正确保留
SCT标准化方法的差异
assay = "SCT"
和normalization.method = "SCT"
虽然都使用SCTransform方法,但实现方式不同:
- assay参数:直接指定使用现有的SCT assay
- normalization.method参数:在整合过程中重新计算SCT标准化
后者更完整地保持了数据的空间属性信息。
最佳实践建议
-
整合方法选择:
- 优先使用
normalization.method
参数而非直接指定assay - 对于空间数据,推荐在整合前测试关键功能
- 优先使用
-
工作流程优化:
# 推荐方式 integrated_obj <- IntegrateData( anchorset = anchors, normalization.method = "SCT", verbose = FALSE ) # 替代方案:在整合前完成空间操作 orig_obj[["region"]] <- Overlay(orig_obj[["fov"]], polygon) integrated_obj[["region"]] <- orig_obj[["region"]]
-
错误处理:
- 遇到类似错误时可检查空间坐标的完整性
- 验证多边形对象与空间数据的坐标系是否匹配
总结
在Seurat空间转录组分析中,整合方法的选择和参数配置会显著影响后续空间操作的功能。特别是使用Harmony整合时,采用normalization.method = "SCT"
而非直接指定assay能够更好地保持数据的空间属性,确保Overlay等空间操作正常执行。这一发现为处理类似问题提供了明确的解决方案,也提醒我们在数据分析流程中需要注意方法间的兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28