SkySense-O项目训练脚本解析与使用指南
2025-07-05 13:06:56作者:卓艾滢Kingsley
项目概述
SkySense-O是一个基于Detectron2框架开发的语义分割项目,专注于处理遥感图像分析任务。该项目通过定制化的训练流程和模型架构,为遥感图像处理提供了高效的解决方案。
训练脚本核心功能
train_net.py作为SkySense-O项目的核心训练脚本,主要实现了以下功能:
- 配置管理:初始化并管理训练过程中的各项参数配置
- 训练流程:构建完整的模型训练流程
- 评估系统:支持训练过程中的模型性能评估
- 优化策略:实现多种优化器和学习率调度策略
关键组件详解
1. 配置初始化
脚本通过init_config()函数创建配置节点,定义了包括输入、数据集、模型、优化器等在内的完整配置结构:
def init_config():
cfg = CN()
cfg.INPUT = CN()
cfg.INPUT.CROP = CN()
cfg.DATASETS = CN()
cfg.DATALOADER = CN()
cfg.MODEL = CN()
cfg.MODEL.SWIN = CN()
cfg.MODEL.SEM_SEG_HEAD = CN()
cfg.SOLVER = CN()
cfg.SOLVER.AMP = CN()
cfg.TEST = CN()
cfg.VERSION = 2
return cfg
2. 自定义Trainer类
项目扩展了Detectron2的DefaultTrainer类,实现了多项定制化功能:
class Trainer(DefaultTrainer):
# 实现自定义训练流程
2.1 数据加载器构建
@classmethod
def build_train_loader(cls, cfg):
if cfg.INPUT.DATASET_MAPPER_NAME == "skysense_o_dataset_mapper":
mapper = SkySenseODatasetMapper(cfg, True)
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
这里使用了项目自定义的SkySenseODatasetMapper来处理遥感图像数据,确保数据格式符合模型输入要求。
2.2 评估器构建
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type in ["sem_seg"]:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
))
# 其他评估器逻辑...
支持语义分割任务的评估,可根据需要扩展其他评估指标。
2.3 优化器构建
@classmethod
def build_optimizer(cls, cfg, model):
# 实现了复杂的参数分组和优化策略
# 支持SGD和ADAMW两种优化器
# 提供完整的梯度裁剪功能
优化器构建过程特别考虑了:
- 不同模块(如backbone)使用不同的学习率
- 参数分组和正则化策略
- 梯度裁剪配置
- 详细的优化器参数日志记录
3. 测试时增强(TTA)支持
@classmethod
def test_with_TTA(cls, cfg, model):
model = SemanticSegmentorWithTTA(cfg, model)
# 使用TTA进行评估
项目实现了测试时数据增强功能,可以提升模型在测试集上的表现。
训练流程解析
1. 配置加载与初始化
def setup(args):
cfg = init_config()
cfg.set_new_allowed(True)
cfg.merge_from_file(args.config_file)
cfg.set_new_allowed(True)
cfg.merge_from_list(args.opts)
cfg.freeze()
# 日志系统初始化...
2. 主训练流程
def main(args):
if args.eval_only:
# 评估模式
else:
# 训练模式
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
使用指南
1. 启动训练
python train_net.py --config-file configs/skysense_o_config.yaml --num-gpus 4
2. 常用参数说明
--config-file: 指定配置文件路径--eval-only: 仅进行评估不训练--resume: 从检查点恢复训练--num-gpus: 使用的GPU数量
3. 配置建议
- 学习率设置:根据batch size调整基础学习率
- 数据增强:在配置文件中配置适合遥感图像的增强策略
- 模型选择:支持多种backbone架构,可根据任务需求选择
高级功能
1. 混合精度训练
脚本支持自动混合精度(AMP)训练,可通过配置文件启用:
SOLVER:
AMP:
ENABLED: True
2. 分布式训练
通过launch工具支持多机多卡分布式训练:
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)
3. 梯度裁剪
支持多种梯度裁剪策略,包括全模型裁剪:
SOLVER:
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "full_model"
CLIP_VALUE: 1.0
性能优化技巧
- 数据加载优化:使用高性能的
SkySenseODatasetMapper处理数据 - 内存管理:适当调整
DATALOADER.NUM_WORKERS参数 - 计算精度:脚本默认设置
torch.set_float32_matmul_precision("high")提升计算效率
常见问题解决
- 内存不足:减小batch size或使用梯度累积
- 训练不稳定:调整学习率或启用梯度裁剪
- 评估指标异常:检查数据集标注和评估器配置
总结
SkySense-O的训练脚本提供了完整的遥感图像语义分割解决方案,通过高度可定制的训练流程和丰富的功能支持,能够满足各种遥感图像分析需求。掌握该脚本的使用方法,可以高效地开展相关研究和应用开发。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.71 K
暂无简介
Dart
634
144
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
651
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
244
316
Ascend Extension for PyTorch
Python
195
212