Inseq 开源项目教程
2024-09-21 18:40:47作者:胡易黎Nicole
1. 项目介绍
Inseq 是一个基于 PyTorch 的可定制工具包,旨在简化对序列生成模型的解释性分析。它支持各种常见的后置解释性分析方法,包括基于梯度、内部和基于扰动的技术。Inseq 允许用户对各种序列生成模型(如编码器-解码器模型和仅解码器模型)进行特征归因,并提供多种归因方法和可视化工具。
2. 项目快速启动
Inseq 可以通过 PyPI 进行安装,支持 Python 3.10 到 3.12 版本。安装命令如下:
pip install inseq
此外,您还可以安装包含可视化功能的 Inseq 版本,以便在 Jupyter Notebook 中使用:
pip install inseq[notebook]
对于开发者,可以从 GitHub 克隆仓库并安装:
git clone https://github.com/inseq-team/inseq.git
cd inseq
make install
3. 应用案例和最佳实践
3.1 特征归因
以下示例使用 Integrated Gradients 方法对英文-法文翻译模型进行归因分析:
import inseq
model = inseq.load_model("Helsinki-NLP/opus-mt-en-fr", "integrated_gradients")
out = model.attribute("The developer argued with the designer because her idea cannot be implemented", n_steps=100)
out.show()
3.2 可视化
Inseq 支持在 Jupyter Notebook、浏览器和命令行中进行可视化。以下示例展示了在 Jupyter Notebook 中的可视化效果:
import inseq
model = inseq.load_model("gpt2", "integrated_gradients")
model.attribute("Hello ladies and", generation_args=["max_new_tokens": 9], n_steps=500, internal_batch_size=50).show()
4. 典型生态项目
Inseq 与多个开源项目兼容,例如 🤗 Transformers 和 Captum。这使得 Inseq 可以轻松集成到现有的深度学习工作流程中,并与其他解释性分析工具一起使用。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie033
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
834
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
go-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4