可播放视频生成项目最佳实践教程
2025-05-28 14:24:58作者:侯霆垣
1. 项目介绍
本项目是基于开源框架PyTorch实现的“可播放视频生成”(Playable Video Generation, PVG)的官方教程。PVG旨在通过自我监督学习的方式,从大量未标记的视频数据中学习到一组离散的动作,并生成与用户输入条件相关的真实视频。用户可以在每一步选择一个离散动作,就像玩游戏一样控制生成的视频。
2. 项目快速启动
首先,确保您的系统满足以下要求:
- 操作系统:Linux
- 硬件:至少一个CUDA兼容的GPU
接着,按照以下步骤启动项目:
环境配置
使用Conda环境
conda env create -f env.yml
conda activate video-generation
使用Docker
docker build -t video-generation:1.0 .
docker run -it --gpus all --ipc=host -v /path/to/directory/video-generation:/video-generation video-generation:1.0 /bin/bash
数据集准备
根据您的需要选择以下数据集之一进行下载和准备:
- BAIR: 从Google Drive下载
bair_256_ours.tar.gz并解压到data目录下。 - Atari Breakout: 从Google Drive下载
breakout_v2_160_ours.tar.gz并解压到data目录下。 - Tennis: 运行
./get_tennis_dataset.sh脚本自动从YouTube获取数据集。
预训练模型
从Google Drive下载预训练模型,并将其放置在checkpoints文件夹下。
生成视频
当checkpoints文件夹中存在对应配置的latest.pth.tar文件时,可以使用以下命令生成视频:
- 对于BAIR数据集:
python play.py --config configs/01_bair.yaml
- 对于Breakout数据集:
python play.py configs/breakout/02_breakout.yaml
- 对于Tennis数据集:
python play.py --config configs/03_tennis.yaml
在生成的全屏窗口中,使用数字键提供动作,数字键0用于重置生成过程。
3. 应用案例和最佳实践
训练模型
使用以下命令开始训练模型:
python train.py --config configs/<config_file>
确保替换<config_file>为你的配置文件名。
评估模型
评估模型需要两个步骤:首先构建评估数据集,然后执行评估。
构建评估数据集:
python build_evaluation_dataset.py --config configs/<config_file>
运行评估:
python evaluate_dataset.py --config configs/evaluation/configs/<config_file>
4. 典型生态项目
本项目的开源生态中,以下是一些典型的相关项目:
- 视频处理工具:如FFmpeg,用于视频数据的提取和转换。
- 深度学习框架:如PyTorch,提供了本项目所需的神经网络实现。
- 数据集:如BAIR、Breakout和Tennis,为本项目提供了丰富的训练和测试数据。
通过上述教程,您可以开始使用并深入了解可播放视频生成项目的最佳实践方式。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216