可播放视频生成项目最佳实践教程
2025-05-28 19:39:16作者:侯霆垣
1. 项目介绍
本项目是基于开源框架PyTorch实现的“可播放视频生成”(Playable Video Generation, PVG)的官方教程。PVG旨在通过自我监督学习的方式,从大量未标记的视频数据中学习到一组离散的动作,并生成与用户输入条件相关的真实视频。用户可以在每一步选择一个离散动作,就像玩游戏一样控制生成的视频。
2. 项目快速启动
首先,确保您的系统满足以下要求:
- 操作系统:Linux
- 硬件:至少一个CUDA兼容的GPU
接着,按照以下步骤启动项目:
环境配置
使用Conda环境
conda env create -f env.yml
conda activate video-generation
使用Docker
docker build -t video-generation:1.0 .
docker run -it --gpus all --ipc=host -v /path/to/directory/video-generation:/video-generation video-generation:1.0 /bin/bash
数据集准备
根据您的需要选择以下数据集之一进行下载和准备:
- BAIR: 从Google Drive下载
bair_256_ours.tar.gz并解压到data目录下。 - Atari Breakout: 从Google Drive下载
breakout_v2_160_ours.tar.gz并解压到data目录下。 - Tennis: 运行
./get_tennis_dataset.sh脚本自动从YouTube获取数据集。
预训练模型
从Google Drive下载预训练模型,并将其放置在checkpoints文件夹下。
生成视频
当checkpoints文件夹中存在对应配置的latest.pth.tar文件时,可以使用以下命令生成视频:
- 对于BAIR数据集:
python play.py --config configs/01_bair.yaml
- 对于Breakout数据集:
python play.py configs/breakout/02_breakout.yaml
- 对于Tennis数据集:
python play.py --config configs/03_tennis.yaml
在生成的全屏窗口中,使用数字键提供动作,数字键0用于重置生成过程。
3. 应用案例和最佳实践
训练模型
使用以下命令开始训练模型:
python train.py --config configs/<config_file>
确保替换<config_file>为你的配置文件名。
评估模型
评估模型需要两个步骤:首先构建评估数据集,然后执行评估。
构建评估数据集:
python build_evaluation_dataset.py --config configs/<config_file>
运行评估:
python evaluate_dataset.py --config configs/evaluation/configs/<config_file>
4. 典型生态项目
本项目的开源生态中,以下是一些典型的相关项目:
- 视频处理工具:如FFmpeg,用于视频数据的提取和转换。
- 深度学习框架:如PyTorch,提供了本项目所需的神经网络实现。
- 数据集:如BAIR、Breakout和Tennis,为本项目提供了丰富的训练和测试数据。
通过上述教程,您可以开始使用并深入了解可播放视频生成项目的最佳实践方式。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
405
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
79
113
仓颉编程语言运行时与标准库。
Cangjie
122
97
仓颉编程语言测试用例。
Cangjie
34
71
暂无简介
Dart
539
118
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
119