首页
/ Locust性能测试工具中RPS统计机制的问题分析

Locust性能测试工具中RPS统计机制的问题分析

2025-05-07 10:46:34作者:范垣楠Rhoda

问题背景

Locust是一款流行的开源负载测试工具,它通过模拟大量用户行为来测试系统的性能表现。在最新版本(2.32.0)中,我们发现了一个关于请求率(RPS)统计显示的问题:当模拟用户停止发送请求后,Web界面上的RPS值不会归零,而是保持在一个非零值。

问题现象

在测试场景中,当配置5个HttpUser,每个用户执行4次请求后停止活动时,理论上所有请求完成后RPS应该显示为0。但实际观察到的现象是:

  1. 总请求数正确显示为20次
  2. 测试仍在运行状态
  3. Web界面持续显示约2.33 RPS的非零值

技术分析

通过深入代码分析,我们发现问题的根源在于Locust的统计机制:

  1. 统计触发机制:Locust的统计更新依赖于on_request事件,该事件仅在用户实际发起请求时触发。当用户停止发送请求后,统计系统不再收到更新。

  2. RPS计算方式:当前实现中,current_rps属性计算的是整个测试期间的平均请求率,而非实时请求率。具体实现是通过统计过去一段时间窗口内的请求数来计算平均值。

  3. 历史设计对比:在早期版本(commit 7cbc85ed)中,Locust采用10秒滑动窗口计算RPS,这种方式能更准确地反映当前系统的实际负载情况。

解决方案建议

针对这个问题,我们建议的改进方向包括:

  1. 引入时间窗口机制:恢复类似早期版本的滑动窗口计算方式,仅统计最近一段时间(如10秒)内的请求率。

  2. 分离统计类型:将总统计和实时统计分离,避免使用同一套统计逻辑处理两种不同的需求。

  3. 定时更新机制:即使在没有请求的情况下,也保持统计系统的定期更新,确保界面能反映真实状态。

技术影响

这个问题的修复将带来以下改进:

  1. 更准确的监控:测试人员可以实时观察到系统负载的真实变化情况。

  2. 更好的用户体验:当测试负载变化或停止时,界面显示与实际行为保持一致。

  3. 调试便利性:有助于更精确地分析测试过程中的性能变化曲线。

总结

Locust作为一款成熟的负载测试工具,其统计机制的准确性至关重要。这个RPS显示问题的解决不仅能够提升工具的实用性,也体现了开源社区持续改进的精神。对于希望参与贡献的开发者,这是一个很好的切入点,可以深入了解Locust的内部统计机制和Web界面实现。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
507
43
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
336
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70