Locust性能测试工具中RPS统计机制的问题分析
问题背景
Locust是一款流行的开源负载测试工具,它通过模拟大量用户行为来测试系统的性能表现。在最新版本(2.32.0)中,我们发现了一个关于请求率(RPS)统计显示的问题:当模拟用户停止发送请求后,Web界面上的RPS值不会归零,而是保持在一个非零值。
问题现象
在测试场景中,当配置5个HttpUser,每个用户执行4次请求后停止活动时,理论上所有请求完成后RPS应该显示为0。但实际观察到的现象是:
- 总请求数正确显示为20次
- 测试仍在运行状态
- Web界面持续显示约2.33 RPS的非零值
技术分析
通过深入代码分析,我们发现问题的根源在于Locust的统计机制:
-
统计触发机制:Locust的统计更新依赖于
on_request事件,该事件仅在用户实际发起请求时触发。当用户停止发送请求后,统计系统不再收到更新。 -
RPS计算方式:当前实现中,
current_rps属性计算的是整个测试期间的平均请求率,而非实时请求率。具体实现是通过统计过去一段时间窗口内的请求数来计算平均值。 -
历史设计对比:在早期版本(commit 7cbc85ed)中,Locust采用10秒滑动窗口计算RPS,这种方式能更准确地反映当前系统的实际负载情况。
解决方案建议
针对这个问题,我们建议的改进方向包括:
-
引入时间窗口机制:恢复类似早期版本的滑动窗口计算方式,仅统计最近一段时间(如10秒)内的请求率。
-
分离统计类型:将总统计和实时统计分离,避免使用同一套统计逻辑处理两种不同的需求。
-
定时更新机制:即使在没有请求的情况下,也保持统计系统的定期更新,确保界面能反映真实状态。
技术影响
这个问题的修复将带来以下改进:
-
更准确的监控:测试人员可以实时观察到系统负载的真实变化情况。
-
更好的用户体验:当测试负载变化或停止时,界面显示与实际行为保持一致。
-
调试便利性:有助于更精确地分析测试过程中的性能变化曲线。
总结
Locust作为一款成熟的负载测试工具,其统计机制的准确性至关重要。这个RPS显示问题的解决不仅能够提升工具的实用性,也体现了开源社区持续改进的精神。对于希望参与贡献的开发者,这是一个很好的切入点,可以深入了解Locust的内部统计机制和Web界面实现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00