up-fetch v1.3.0 版本发布:增强请求体处理与配置灵活性
up-fetch 是一个基于原生 fetch API 的轻量级封装库,旨在提供更便捷、更灵活的 HTTP 请求体验。它通过中间件机制和配置预设功能,简化了常见请求场景的处理逻辑,同时保持了与原生 API 的良好兼容性。
新增功能:isJsonifiable 实用工具
v1.3.0 版本引入了一个新的实用工具函数 isJsonifiable,用于判断一个值是否可以被安全地转换为 JSON 格式。这个工具函数在处理请求体时特别有用,可以帮助开发者避免在序列化不可 JSON 化的值时出现意外错误。
在实际应用中,我们经常会遇到需要判断一个对象是否可以被 JSON.stringify 处理的情况。例如,当我们需要发送一个请求时,如果请求体包含不可序列化的内容(如循环引用的对象、函数等),直接调用 JSON.stringify 会导致错误。有了 isJsonifiable,我们可以提前进行安全检查:
if (isJsonifiable(data)) {
// 安全地进行 JSON 序列化
const jsonString = JSON.stringify(data);
} else {
// 处理不可序列化的情况
}
这个工具函数的实现考虑了 JavaScript 中各种可能的数据类型和边缘情况,为开发者提供了可靠的判断依据。
重大变更:请求体处理机制的改进
更灵活的请求体类型支持
本次版本对 serializeBody 选项进行了重要改进。在之前的版本中,serializeBody 只接收可以被 JSON 化的值作为参数。现在,它能够接收任何非空值作为第一个参数,大大提高了灵活性。
这一变化意味着开发者现在可以处理更多类型的请求体,包括但不限于:
- FormData
- URLSearchParams
- Blob
- ArrayBuffer
- 自定义数据结构
类型安全的请求体约束
配合 TypeScript 的类型系统,开发者现在可以通过类型注解来精确控制允许的请求体类型。例如:
const upfetch = up(fetch, () => ({
serializeBody: (body: FormData) => body,
}));
在这个例子中,我们明确指定 serializeBody 只接受 FormData 类型的请求体。当尝试传递其他类型的请求体时,TypeScript 会在编译时给出错误提示,从而避免运行时问题。
这种类型安全的约束机制特别适合在大型项目中使用,它可以帮助团队保持代码一致性,减少因类型不匹配导致的错误。
配置函数的参数变更
另一个重要的架构调整是关于 up-fetch 配置函数的参数传递方式。在 v1.3.0 之前,配置函数的第二个参数具有功能性签名。现在,up 函数直接接收 fetcher 的参数,使得配置可以基于具体的请求信息进行动态调整。
这种改变带来了更直观的配置方式,开发者现在可以根据请求的 URL 或选项来定制不同的默认行为。例如:
const upfetch = up(fetch, (input, options) => ({
baseUrl: 'https://example.com',
timeout: typeof input === 'string' && input.startsWith('/export/')
? 30000
: 5000,
}));
在这个配置中,我们为不同的请求路径设置了不同的超时时间:以 '/export/' 开头的路径使用 30 秒超时,其他路径则使用 5 秒超时。这种基于请求特征的动态配置能力,使得 up-fetch 能够更好地适应复杂的业务场景。
升级建议
对于现有项目升级到 v1.3.0 版本,开发者需要注意以下几点:
- 检查项目中是否依赖了
serializeBody只接收 JSON 化值的特性,必要时调整相关代码。 - 如果使用了配置函数的第二个参数的功能性签名,需要重构为新的参数接收方式。
- 考虑使用新的
isJsonifiable工具函数来增强请求体处理的健壮性。
总体而言,v1.3.0 版本的改进使得 up-fetch 在处理各种 HTTP 请求场景时更加灵活和强大,特别是对于需要处理多种数据格式和动态配置的项目来说,这些改进将显著提升开发体验和代码质量。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00