DINO项目中的模型微调恢复技巧
2025-07-01 01:23:48作者:韦蓉瑛
概述
在深度学习模型训练过程中,由于各种原因导致训练中断是常见的情况。本文将详细介绍如何在DINO项目中实现模型微调过程的恢复,避免从头开始训练带来的时间和计算资源浪费。
模型恢复的关键参数
DINO项目提供了几个重要参数来支持训练过程的恢复:
--resume:指定之前保存的模型检查点文件路径--finetune_ignore:指定在微调过程中需要忽略的层--start_epoch:设置训练开始的epoch数
具体实现方法
在DINO项目中,可以通过修改训练脚本DINO_train.sh来实现训练恢复。以下是关键配置示例:
python main.py \
--output_dir logs/DINO/cards-resnet50-4scale \
-c /content/DINO/logs/DINO/cards-resnet50-4scale/config_cfg.py \
--coco_path /content/content/dataset \
--resume checkpoint_best_regular.pth \
--finetune_ignore "label_enc.weight class_embed" \
--start_epoch 3 \
--options dn_scalar=100 embed_init_tgt=TRUE \
dn_label_coef=1.0 dn_bbox_coef=1.0 use_ema=False \
dn_box_noise_scale=1.0
参数详解
-
resume参数:指定了之前训练保存的最佳模型检查点文件
checkpoint_best_regular.pth,系统会从这个检查点恢复模型权重。 -
finetune_ignore参数:指定了在微调过程中需要忽略的层,这里忽略了"label_enc.weight"和"class_embed"两个层的参数更新。
-
start_epoch参数:设置为3表示从第3个epoch开始继续训练,这对于学习率调度等需要epoch信息的组件非常重要。
注意事项
- 确保检查点文件路径正确,否则会导致恢复失败。
- 恢复训练时建议保持与原始训练相同的超参数设置,除非有特殊需求。
- 如果修改了模型结构,可能需要调整finetune_ignore参数。
- 恢复训练后,建议监控模型性能以确保恢复过程正常。
通过合理使用这些参数,可以有效地在DINO项目中实现训练过程的恢复,大大节省训练时间和计算资源。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135