ClickHouse Operator 安装后未创建资源的排查与解决
ClickHouse Operator 是一个用于在 Kubernetes 环境中管理 ClickHouse 集群的工具。本文将介绍在安装 ClickHouse Operator 后,当应用 ClickHouseInstallation (CHI) 资源时未创建任何资源的问题及其解决方案。
问题现象
用户在按照官方文档安装 ClickHouse Operator 后,创建了一个简单的 ClickHouseInstallation 资源定义文件,指定了用户配置、集群定义和存储模板。然而应用该文件后,在指定的命名空间中并未创建任何资源,包括 Pod、Service 等。
根本原因
经过排查,发现问题的根源在于 Operator 的监控范围配置。默认情况下,ClickHouse Operator 只监控特定命名空间中的 CHI 资源。在用户的安装过程中,Operator 被安装在 clickhouse-operator 命名空间,而用户尝试在 clickhouse 命名空间中创建 CHI 资源,导致 Operator 无法检测到该资源的创建事件。
解决方案
有三种可行的解决方案:
-
在 Operator 监控的命名空间中创建 CHI 资源
最简单的方法是将 CHI 资源直接创建在与 Operator 相同的命名空间中(默认为clickhouse-operator)。 -
修改 Operator 配置以监控特定命名空间
编辑 Operator 的 ConfigMapetc-clickhouse-operator-files,在watch部分添加需要监控的命名空间:watch: namespaces: ["clickhouse"] -
允许 Operator 监控所有命名空间
如果需要 Operator 监控集群中的所有命名空间,可以将配置修改为:watch: namespaces: [".*"]或者
watch: namespaces: [""]
最佳实践建议
-
明确命名空间策略
在生产环境中,建议明确规划命名空间使用策略。可以将 Operator 和 CHI 资源放在同一命名空间,或者为不同环境的 ClickHouse 集群分配不同的命名空间。 -
最小权限原则
当配置 Operator 监控多个命名空间时,确保 Operator 具有足够的权限访问这些命名空间中的资源。 -
配置验证
修改 ConfigMap 后,可以通过以下命令验证 Operator 是否重新加载了配置:kubectl logs -n clickhouse-operator <operator-pod-name>查看日志中是否有配置重新加载的提示。
通过理解 Operator 的监控机制和合理配置命名空间,可以确保 ClickHouse 集群资源能够按预期创建和管理。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00