ClickHouse Operator 安装后未创建资源的排查与解决
ClickHouse Operator 是一个用于在 Kubernetes 环境中管理 ClickHouse 集群的工具。本文将介绍在安装 ClickHouse Operator 后,当应用 ClickHouseInstallation (CHI) 资源时未创建任何资源的问题及其解决方案。
问题现象
用户在按照官方文档安装 ClickHouse Operator 后,创建了一个简单的 ClickHouseInstallation 资源定义文件,指定了用户配置、集群定义和存储模板。然而应用该文件后,在指定的命名空间中并未创建任何资源,包括 Pod、Service 等。
根本原因
经过排查,发现问题的根源在于 Operator 的监控范围配置。默认情况下,ClickHouse Operator 只监控特定命名空间中的 CHI 资源。在用户的安装过程中,Operator 被安装在 clickhouse-operator
命名空间,而用户尝试在 clickhouse
命名空间中创建 CHI 资源,导致 Operator 无法检测到该资源的创建事件。
解决方案
有三种可行的解决方案:
-
在 Operator 监控的命名空间中创建 CHI 资源
最简单的方法是将 CHI 资源直接创建在与 Operator 相同的命名空间中(默认为clickhouse-operator
)。 -
修改 Operator 配置以监控特定命名空间
编辑 Operator 的 ConfigMapetc-clickhouse-operator-files
,在watch
部分添加需要监控的命名空间:watch: namespaces: ["clickhouse"]
-
允许 Operator 监控所有命名空间
如果需要 Operator 监控集群中的所有命名空间,可以将配置修改为:watch: namespaces: [".*"]
或者
watch: namespaces: [""]
最佳实践建议
-
明确命名空间策略
在生产环境中,建议明确规划命名空间使用策略。可以将 Operator 和 CHI 资源放在同一命名空间,或者为不同环境的 ClickHouse 集群分配不同的命名空间。 -
最小权限原则
当配置 Operator 监控多个命名空间时,确保 Operator 具有足够的权限访问这些命名空间中的资源。 -
配置验证
修改 ConfigMap 后,可以通过以下命令验证 Operator 是否重新加载了配置:kubectl logs -n clickhouse-operator <operator-pod-name>
查看日志中是否有配置重新加载的提示。
通过理解 Operator 的监控机制和合理配置命名空间,可以确保 ClickHouse 集群资源能够按预期创建和管理。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









