DirectXShaderCompiler 6.9版本中的原生向量运算优化
在DirectXShaderCompiler 6.9版本中,编译器团队对向量运算进行了重要优化,使得元素级别的向量运算符现在能够直接操作原生向量,而不是像之前那样将它们拆分为标量运算。这一改进显著提升了着色器代码的执行效率和编译质量。
优化内容概述
本次优化涵盖了多种类型的向量运算符,主要包括以下几类:
-
算术运算:包括加法(+)、减法(-,包括一元和二元)、乘法()、除法(/)、取模(%),以及对应的复合赋值运算符(+=、-=、=、/=)
-
位运算:包括按位或(|)、按位与(&)、按位异或(^)、按位取反(~),以及对应的复合赋值运算符(|=、&=、^=)
-
比较运算:包括等于(==)、不等于(!=)、小于(<)、大于(>)、小于等于(<=)、大于等于(>=)
-
逻辑运算:包括逻辑或(||)、逻辑与(&&)、条件运算符(?:)。需要注意的是,从HLSL2021开始,逻辑运算在向量上已被弃用,转而推荐使用and、or和select函数
技术实现原理
这项优化的核心在于禁用标量化处理过程。在之前的版本中,编译器会将向量运算自动转换为对应的标量运算序列,这种转换虽然保证了功能的正确性,但会导致生成的DXIL代码效率不高。
在6.9版本中,编译器团队修改了这一行为,使得这些运算符能够直接处理完整的向量数据。这一改变意味着:
- 生成的DXIL代码将保持向量作为运算符的参数
- 减少了指令数量,提高了执行效率
- 更好地利用了现代GPU的SIMD处理能力
性能影响与优势
这项优化带来的主要优势包括:
-
更高效的代码生成:避免了不必要的标量化处理,减少了生成的指令数量
-
更好的硬件利用率:现代GPU架构针对向量运算有专门的优化,原生向量运算能更好地利用这些硬件特性
-
更简洁的中间表示:生成的DXIL代码更加紧凑和直观
-
潜在的功耗优化:减少指令数量意味着可能降低GPU的功耗
兼容性考虑
需要注意的是,对于逻辑运算部分,从HLSL2021开始,传统的逻辑运算符(||、&&)在向量上的使用已被标记为不推荐。开发者应该使用新的and、or和select函数来替代。这一变化是为了提高代码的明确性和一致性。
验证与测试
在实现这一优化时,编译器团队特别强调了测试验证的重要性。测试需要确保:
- 所有运算符在向量运算时都能正确保留向量参数
- 生成的DXIL代码符合预期
- 运算结果的正确性不受影响
- 各种向量长度(如float2、float3、float4等)都能正确处理
这项优化是DirectXShaderCompiler持续性能改进的一部分,展示了团队对提升着色器编译效率和执行性能的持续承诺。对于开发者而言,这意味着他们编写的向量运算代码现在能够以更高效的方式执行,而无需进行特殊的优化处理。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00