Neural Amp Modeler LV2 插件使用教程
1. 项目介绍
Neural Amp Modeler LV2 是一个在 LV2 插件中实现神经放大器模型(NAM)的裸机实现。该项目由 Mike Oliphant 开发,旨在为音频处理提供一个高效且灵活的解决方案。该插件没有用户界面,设置模型需要 LV2 宿主支持 atom:Path 参数。Reaper(从 v6.82 开始)、Carla 和 Ardour 等宿主支持此功能。
2. 项目快速启动
2.1 克隆项目
首先,克隆项目仓库并进入项目目录:
git clone --recurse-submodules -j4 https://github.com/mikeoliphant/neural-amp-modeler-lv2.git
cd neural-amp-modeler-lv2
2.2 构建插件
2.2.1 Linux/MacOS
在 Linux 或 MacOS 上,使用以下命令构建插件:
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE="Release" ..
make -j4
2.2.2 Windows
在 Windows 上,使用以下命令构建插件:
mkdir build
cd build
cmake -G "Visual Studio 17 2022" -A x64 ..
cmake --build . --config=release -j4
构建完成后,插件将位于 build/neural_amp_modeler.lv2 目录中。
2.3 优化
如果你的处理器是相对现代的 x64 架构,可以在 cmake 命令中添加 -DUSE_NATIVE_ARCH=ON 以启用特定处理器的优化。
3. 应用案例和最佳实践
3.1 使用模型
为了获得预期的效果,必须将音频宿主设置为与模型训练时相同的采样率(通常为 48kHz)。插件本身不进行重采样。对于仅包含放大器模型的场景,通常需要在插件之后运行一个脉冲响应(IR)来模拟音箱。
3.2 模型来源
最佳的模型来源是 ToneHunt。NAM 模型通常在现代 PC 上运行良好,但在较弱的硬件上可能会遇到性能问题。Raspberry Pi 4 运行 64 位操作系统时,可以运行“标准”NAM 模型,并留有一些余地来处理音箱 IR 和轻量级效果。
4. 典型生态项目
4.1 GUI 版本
如果你需要一个带有用户界面的版本,可以查看 brummer10 开发的 GUI 版本,该版本适用于 Linux 和 Windows。
4.2 MOD Desktop App
MOD Desktop App 也集成了 Neural Amp Modeler LV2 插件,提供了一个完整的音频处理解决方案。
4.3 Stompbox
Stompbox 是 Mike Oliphant 开发的另一个数字效果器应用,也集成了 Neural Amp Modeler 插件。
通过这些生态项目,用户可以更方便地集成和使用 Neural Amp Modeler LV2 插件,提升音频处理的效率和效果。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C059
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00