Neural Amp Modeler LV2 插件使用教程
1. 项目介绍
Neural Amp Modeler LV2 是一个在 LV2 插件中实现神经放大器模型(NAM)的裸机实现。该项目由 Mike Oliphant 开发,旨在为音频处理提供一个高效且灵活的解决方案。该插件没有用户界面,设置模型需要 LV2 宿主支持 atom:Path
参数。Reaper(从 v6.82 开始)、Carla 和 Ardour 等宿主支持此功能。
2. 项目快速启动
2.1 克隆项目
首先,克隆项目仓库并进入项目目录:
git clone --recurse-submodules -j4 https://github.com/mikeoliphant/neural-amp-modeler-lv2.git
cd neural-amp-modeler-lv2
2.2 构建插件
2.2.1 Linux/MacOS
在 Linux 或 MacOS 上,使用以下命令构建插件:
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE="Release" ..
make -j4
2.2.2 Windows
在 Windows 上,使用以下命令构建插件:
mkdir build
cd build
cmake -G "Visual Studio 17 2022" -A x64 ..
cmake --build . --config=release -j4
构建完成后,插件将位于 build/neural_amp_modeler.lv2
目录中。
2.3 优化
如果你的处理器是相对现代的 x64 架构,可以在 cmake
命令中添加 -DUSE_NATIVE_ARCH=ON
以启用特定处理器的优化。
3. 应用案例和最佳实践
3.1 使用模型
为了获得预期的效果,必须将音频宿主设置为与模型训练时相同的采样率(通常为 48kHz)。插件本身不进行重采样。对于仅包含放大器模型的场景,通常需要在插件之后运行一个脉冲响应(IR)来模拟音箱。
3.2 模型来源
最佳的模型来源是 ToneHunt。NAM 模型通常在现代 PC 上运行良好,但在较弱的硬件上可能会遇到性能问题。Raspberry Pi 4 运行 64 位操作系统时,可以运行“标准”NAM 模型,并留有一些余地来处理音箱 IR 和轻量级效果。
4. 典型生态项目
4.1 GUI 版本
如果你需要一个带有用户界面的版本,可以查看 brummer10 开发的 GUI 版本,该版本适用于 Linux 和 Windows。
4.2 MOD Desktop App
MOD Desktop App 也集成了 Neural Amp Modeler LV2 插件,提供了一个完整的音频处理解决方案。
4.3 Stompbox
Stompbox 是 Mike Oliphant 开发的另一个数字效果器应用,也集成了 Neural Amp Modeler 插件。
通过这些生态项目,用户可以更方便地集成和使用 Neural Amp Modeler LV2 插件,提升音频处理的效率和效果。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









