JAX神经网络中的激活值返回与JIT编译机制解析——基于uvadlc_notebooks项目
2025-06-28 04:40:14作者:咎竹峻Karen
在深度学习框架JAX的实际应用中,我们经常需要在神经网络训练过程中获取中间层的激活值用于可视化或调试。本文将以uvadlc_notebooks项目中的BaseNetwork实现为例,深入探讨JAX中返回激活值的实现机制及其与JIT编译的关系。
激活值收集的实现方式
在BaseNetwork类中,通过设置return_activations参数,我们可以选择是否返回各层的激活值。核心实现逻辑如下:
activations = []
for hd in self.hidden_sizes:
x = nn.Dense(hd, kernel_init=self.kernel_init)(x)
activations.append(x) # 收集线性变换后的激活值
x = self.act_fn(x) # 应用激活函数
activations.append(x) # 收集激活函数后的激活值
x = nn.Dense(self.num_classes, kernel_init=self.kernel_init)(x)
activations.append(x) # 收集输出层的激活值
return x if not return_activations else (x, activations)
这种实现方式看似违反了JAX的不可变原则,但实际上完全符合JAX的设计哲学。
JIT编译与不可变性的关系
JAX要求被JIT编译的函数必须保持函数式编程的不可变性,但这主要针对的是函数外部的可变对象。在函数内部创建的临时可变对象(如这里的activations列表)不会影响JIT编译,因为:
- 局部作用域:列表对象仅在函数内部创建和修改,不会影响外部状态
- 静态形状:列表长度由网络结构决定(hidden_sizes的长度),是静态可知的
- 输出转换:最终返回的是转换后的不可变元组,而非可变列表本身
JAXPR视角下的激活值返回
从JAX的中间表示(JAXPR)来看,这种实现会被转换为:
- 各层计算保持独立,生成各自的激活值张量
- 最终将所有激活值张量打包成一个PyTree结构(这里是列表)
- 返回的元组包含预测结果和激活值列表
这种转换完全符合JAX的函数式转换要求,因为虽然过程中使用了可变列表收集数据,但最终输出是不可变的数据结构。
实际应用建议
在实际项目中,如果需要返回中间结果,可以遵循以下原则:
- 确保所有收集的数据形状在编译时可知
- 避免收集依赖于输入数据的动态数量的结果
- 最终返回不可变的数据结构(如元组、命名元组等)
- 对于复杂场景,考虑使用jax.tree_util构建更结构化的输出
通过这种方式,我们既能获得需要的中间结果,又能充分利用JAX的JIT编译优化,实现高效的神经网络训练和调试。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30