首页
/ ```markdown

```markdown

2024-06-22 10:20:27作者:盛欣凯Ernestine
# 推荐使用:深度学习系统堆栈的Graph Executor与TVM集成实践





## 项目介绍

在本项目中,我们深入研究并实现了深度学习系统堆栈的核心组件——计算图执行器(Graph Executor),以及通过高级编译器框架[TVM](http://tvmlang.org/)来优化深层神经网络操作。继[Assignment 1](https://github.com/dlsys-course/assignment1)中构建了用户API层(包括计算图和自动微分)之后,在这个项目里,我们将进一步下探到堆栈的更深层次。

## 技术分析

该项目的主要贡献在于:

1. **形状推断(Shape Inference)** —— 实现了基于输入形状的计算图上形状的动态解析。
2. **内存管理** —— 开发了一套记忆体管理系统,确保跨训练迭代的高效复用,减少内存开销。
3. **TVM内核实现** —— 利用TVM编写常见的DL内核(如Relu、MatMul、Softmax),并针对矩阵乘法等关键运算进行了高度优化,从而显著提升了运行效率。

此外,代码架构清晰地分为几个关键部分:
- `python/dlsys/autodiff.py`:涵盖了计算图、自动微分逻辑和执行器的实现。
- `python/dlsys/tvm_op.py`:借助TVM实现了多种核心运算的内核函数。

测试套件则分布在`test/test_tvm_op.py``test/mnist_dlsys.py`文件中,旨在验证各种操作符的行为正确性和性能指标是否达标。

## 应用场景和技术展现

该项目不仅能够处理简单的多层感知机(MLP)模型,还允许用户利用TVM生成的操作符来进行模型的训练与测试。它适用于任何需要高性能、低延迟和高度可定制化的深度学习任务。具体而言,通过对矩阵乘法内核的高度优化,使得在不同设备上的模型训练速度至少提升10倍以上,展现出其在加速端到端机器学习工作流方面的巨大潜力。

## 项目特点

- **自适应形状推理**:能自动适配不同的输入维度,简化模型构建过程。
- **智能内存调度**:避免重复分配内存,有效降低硬件资源消耗。
- **TVM优化引擎**:通过自动化工具链进行内核优化,显著缩短训练时间,提高整体效率。
- **易于扩展和维护**:良好的代码结构和文档注释,便于后续功能开发和问题定位。

总之,该开源项目提供了对现代深度学习系统底层架构的一个深度洞见,并且为开发者提供了一个平台以实践和理解复杂的编译器技术和内存优化策略,是一次不可多得的学习机会和实战演练。

现在就加入我们,一起探索深度学习系统的无限可能吧!

---



项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5