ShardingSphere JDBC 中BASE事务的实现与Seata AT模式集成解析
2025-05-10 18:19:59作者:咎竹峻Karen
背景概述
在分布式数据库中间件ShardingSphere中,事务管理一直是核心能力之一。除了传统的XA强一致性事务,ShardingSphere还支持基于最终一致性的BASE事务模型。本文重点剖析ShardingSphere JDBC如何通过集成Seata的AT模式实现柔性事务,以及实际应用中的关键配置要点。
BASE事务模型的核心特点
BASE(Basically Available, Soft state, Eventually consistent)是相对于ACID的柔性事务模型,具有以下特征:
- 基本可用性:系统在部分故障时仍能提供服务
- 软状态:允许系统存在中间状态
- 最终一致性:不要求实时一致,但保证最终数据一致
ShardingSphere与Seata AT的集成架构
ShardingSphere通过以下模块实现Seata AT模式集成:
shardingsphere-transaction-base:提供BASE事务基础框架sharding-transaction-base-seata-at:Seata AT模式的具体实现
集成架构的工作流程包含三个关键组件:
- 事务协调器(TC):Seata Server负责全局事务协调
- 事务管理器(TM):定义事务边界,发起全局事务
- 资源管理器(RM):管理分支事务,负责本地事务提交/回滚
支持数据库类型
由于Seata AT模式依赖SQL方言解析,目前支持的数据库包括:
- MySQL(社区版)
- Oracle(Free/XE版本)
- PostgreSQL
- SQL Server
- 达梦DM8(商业版本)
典型配置示例
# Seata Server配置
seata:
service:
vgroup-mapping:
default_tx_group: default
grouplist:
default: 127.0.0.1:8091
# ShardingSphere JDBC配置
spring:
shardingsphere:
props:
sql-show: true
datasource:
names: ds0,ds1
ds0:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/ds0
username: root
password:
ds1:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/ds1
username: root
password:
rules:
sharding:
tables:
t_order:
actual-data-nodes: ds$->{0..1}.t_order_$->{0..1}
table-strategy:
standard:
sharding-column: order_id
precise-algorithm-class-name: org.example.MyPreciseShardingAlgorithm
key-generate-strategy:
column: order_id
key-generator-name: snowflake
实现原理深度解析
- 全局事务ID传播:通过ThreadLocal上下文传递XID
- SQL解析拦截:Seata通过Hook机制解析SQL生成undo log
- 二阶段提交:
- 一阶段:提交本地事务,生成undo log
- 二阶段:
- 成功:异步删除undo log
- 失败:通过undo log进行补偿回滚
生产环境注意事项
- Seata Server高可用:建议采用集群部署
- undo_log表维护:需要定期清理历史数据
- 隔离级别:默认读未提交,业务需考虑脏读问题
- 性能影响:相比本地事务有约10-30%的性能损耗
常见问题解决方案
- 跨微服务事务:需确保XID在服务间正确传递
- 不支持的SQL:部分DDL语句和存储过程可能不被支持
- 连接池配置:建议使用HikariCP,避免连接泄漏
总结
ShardingSphere通过集成Seata AT模式,为分布式场景提供了完善的BASE事务解决方案。开发者需要充分理解其实现原理和限制,才能在实际业务中发挥最大价值。随着版本的迭代,未来将支持更多数据库类型和更复杂的事务场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758