FRP项目中多端口HTTP代理的配置方案解析
2025-04-28 01:04:32作者:曹令琨Iris
在实际生产环境中,我们经常会遇到需要将多个前端应用通过FRP进行内网穿透的场景。本文将以Vue和Next.js应用为例,深入探讨如何通过FRP实现多端口HTTP服务的优雅配置方案。
典型场景分析
假设我们有以下两个前端应用需要暴露到公网:
- Vue应用运行在客户端9000端口
- Next.js应用运行在客户端9001端口
这两个应用都属于"前端path敏感"型应用,这意味着它们不适合使用FRP的路由功能(即通过路径区分不同应用),因为前端路由会与FRP的路由机制产生冲突。
传统解决方案的局限性
常规做法是为每个应用启动独立的FRP客户端和服务端进程,配置如下:
# 第一个客户端配置
[common]
server_addr = "公网IP"
server_port = 7000
[[proxies]]
name = "app-vue"
type = "http"
localPort = 9000
customDomains = ["vue.example.com"]
# 第二个客户端配置
[common]
server_addr = "公网IP"
server_port = 7001
[[proxies]]
name = "app-next"
type = "http"
localPort = 9001
customDomains = ["next.example.com"]
这种方案虽然可行,但存在明显缺点:
- 需要维护多个服务端和客户端进程
- 占用多个服务端端口(7000、7001等)
- 配置管理复杂,扩展性差
进阶配置方案探索
更优的解决方案是尝试在单个FRP客户端配置中实现多端口服务。理想中的配置应该如下:
[[proxies]]
name = "app-vue"
type = "http"
serverAddr = "公网IP"
serverPort = 9000
localPort = 9000
customDomains = ["vue.example.com"]
[[proxies]]
name = "app-next"
type = "http"
serverAddr = "公网IP"
serverPort = 9001
localPort = 9001
customDomains = ["next.example.com"]
这种配置的关键点在于:
- 每个服务可以独立指定服务端端口
- 共用同一个服务端实例
- 通过不同域名区分应用
技术实现原理
要实现这种配置,FRP需要支持以下特性:
- 服务级服务端配置:允许在每个[[proxies]]中覆盖全局的server_addr和server_port设置
- 多端口监听:服务端能够同时监听多个端口(如9000和9001)
- 智能路由:根据域名自动将请求路由到对应的本地服务
从技术角度看,这种实现是完全可行的。服务端可以:
- 在启动时绑定多个监听端口
- 为每个端口创建独立的服务处理器
- 根据客户端连接时指定的服务名称进行路由
服务端配置建议
对应的服务端配置应支持多端口绑定:
[common]
bind_port = 9000
bind_port = 9001
这样服务端就能同时处理两个端口的HTTP请求,并将其正确转发到对应的客户端应用。
方案优势
这种配置方案相比传统方案具有显著优势:
- 资源高效:只需运行一个服务端和客户端进程
- 管理简便:所有配置集中在一个文件中
- 扩展性强:新增应用只需添加新的[[proxies]]块
- 端口节约:不需要额外的控制端口(7000等)
注意事项
实际实施时需要注意:
- 确保所有使用的端口(9000、9001等)在服务端防火墙中已开放
- 每个应用的customDomains必须配置正确且互不冲突
- 本地服务的localIP和localPort要确保可达
- 考虑使用HTTPS时证书的配置管理
总结
通过合理配置FRP,我们可以实现单个服务端和客户端实例支持多个前端应用的端口服务。这种方案不仅简化了部署架构,还提高了系统的可维护性和扩展性。对于需要暴露多个前端应用的企业场景,这种配置方式无疑是更优的选择。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
121
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.17 K