FRP项目中多端口HTTP代理的配置方案解析
2025-04-28 11:11:17作者:曹令琨Iris
在实际生产环境中,我们经常会遇到需要将多个前端应用通过FRP进行内网穿透的场景。本文将以Vue和Next.js应用为例,深入探讨如何通过FRP实现多端口HTTP服务的优雅配置方案。
典型场景分析
假设我们有以下两个前端应用需要暴露到公网:
- Vue应用运行在客户端9000端口
- Next.js应用运行在客户端9001端口
这两个应用都属于"前端path敏感"型应用,这意味着它们不适合使用FRP的路由功能(即通过路径区分不同应用),因为前端路由会与FRP的路由机制产生冲突。
传统解决方案的局限性
常规做法是为每个应用启动独立的FRP客户端和服务端进程,配置如下:
# 第一个客户端配置
[common]
server_addr = "公网IP"
server_port = 7000
[[proxies]]
name = "app-vue"
type = "http"
localPort = 9000
customDomains = ["vue.example.com"]
# 第二个客户端配置
[common]
server_addr = "公网IP"
server_port = 7001
[[proxies]]
name = "app-next"
type = "http"
localPort = 9001
customDomains = ["next.example.com"]
这种方案虽然可行,但存在明显缺点:
- 需要维护多个服务端和客户端进程
- 占用多个服务端端口(7000、7001等)
- 配置管理复杂,扩展性差
进阶配置方案探索
更优的解决方案是尝试在单个FRP客户端配置中实现多端口服务。理想中的配置应该如下:
[[proxies]]
name = "app-vue"
type = "http"
serverAddr = "公网IP"
serverPort = 9000
localPort = 9000
customDomains = ["vue.example.com"]
[[proxies]]
name = "app-next"
type = "http"
serverAddr = "公网IP"
serverPort = 9001
localPort = 9001
customDomains = ["next.example.com"]
这种配置的关键点在于:
- 每个服务可以独立指定服务端端口
- 共用同一个服务端实例
- 通过不同域名区分应用
技术实现原理
要实现这种配置,FRP需要支持以下特性:
- 服务级服务端配置:允许在每个[[proxies]]中覆盖全局的server_addr和server_port设置
- 多端口监听:服务端能够同时监听多个端口(如9000和9001)
- 智能路由:根据域名自动将请求路由到对应的本地服务
从技术角度看,这种实现是完全可行的。服务端可以:
- 在启动时绑定多个监听端口
- 为每个端口创建独立的服务处理器
- 根据客户端连接时指定的服务名称进行路由
服务端配置建议
对应的服务端配置应支持多端口绑定:
[common]
bind_port = 9000
bind_port = 9001
这样服务端就能同时处理两个端口的HTTP请求,并将其正确转发到对应的客户端应用。
方案优势
这种配置方案相比传统方案具有显著优势:
- 资源高效:只需运行一个服务端和客户端进程
- 管理简便:所有配置集中在一个文件中
- 扩展性强:新增应用只需添加新的[[proxies]]块
- 端口节约:不需要额外的控制端口(7000等)
注意事项
实际实施时需要注意:
- 确保所有使用的端口(9000、9001等)在服务端防火墙中已开放
- 每个应用的customDomains必须配置正确且互不冲突
- 本地服务的localIP和localPort要确保可达
- 考虑使用HTTPS时证书的配置管理
总结
通过合理配置FRP,我们可以实现单个服务端和客户端实例支持多个前端应用的端口服务。这种方案不仅简化了部署架构,还提高了系统的可维护性和扩展性。对于需要暴露多个前端应用的企业场景,这种配置方式无疑是更优的选择。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212